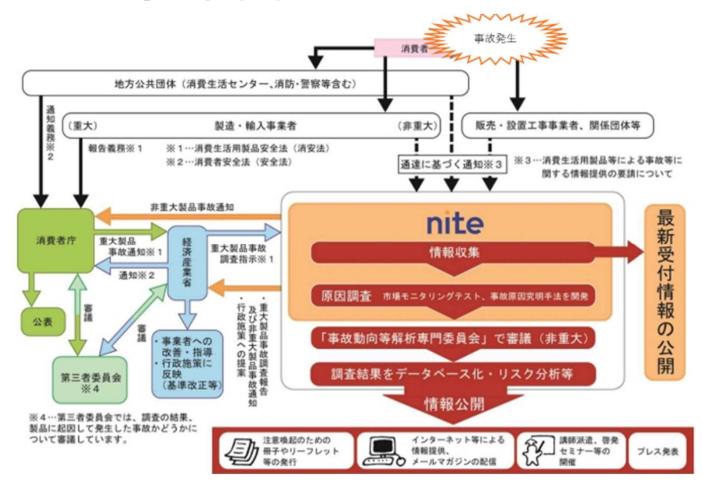
2024年度NITE講座

「事業者等における製品安全対策の基礎知識」

事故分析講座


No.04 電気分野の事故原因調査 手法について

> 独立行政法人製品評価技術基盤機構 製品安全センター 事故調査課 山根 暢仁

講座概要

- (1) NITEの事故調査について
- (2) 事故調査の際に使用する機器
- (3) 事故調査における基礎知識
- (4) リチウムイオン電池の事故調査

事故情報収集制度について

(1) NITEの事故調査について

- ・事故発生時の状況
- ・使用状況 など

関係機関からの聞き取り

- ・事故品
- ・同等品、類似品
- の調査・再現試験

- ・仕様書・回路図
- ・試験結果など

技術資料の確認

事故発生のメカニズムを推定

以上を踏まえて、製品に問題があったのか、使い方に問題が あったのかなどの「事故原因」を検討する

事故品は破損したり、焼損して外郭樹脂等が溶融し、 原形を留めていない場合が多々ある。

様々な機器を用いて、原因究明につながる痕跡を見つける

分解時に用いる各種道具

ニッパー

ペンチ

ホットジェット

焼損残渣の樹脂等を温風 で溶かしたり除去する際 に活用できます。(50 ~600°C)

超音波カッター

刃先に超音波振動を加えることで、振動熱により 樹脂を溶断することができます。

ボール盤

ドライバー

ルーペ・ピンセット等

超音波洗浄機

試料の表面に付着した炭化物 等を除去する際に使用します。

自動精密切断機

観察に用いる各種機器

デジタルカメラ

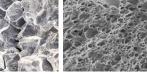
実体顕微鏡

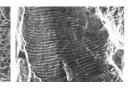
試料を立体視しながら観察できます。(10~1 00倍)

マイクロスコープ

ソフトウェアにより立体画像化 しながら観察できます。(20 ~1000倍)

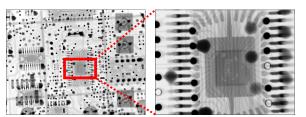
金属顕微鏡


金属組織を観察できます。 (100~1000倍)


電子顕微鏡

高倍率での観察ができます。 (50~10006)

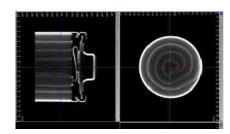
金属の破断面観察の例



観察(非破壊)に用いる各種機器

X線透視装置

サンプル内部の状態を、非破壊で観察できます。



透視画像

X線CT装置

サンプル内部の状態を、非破壊で3次元観察できます。

CT画像

化学分析に用いる各種機器

蛍光 X 線分析装置 (XRF)

エネルギー分散型X 線分析装置(EDX)

サンプルを構成する元素の種類や 含有量を測定する装置です。

フーリエ変換赤外分光 光度計(FTIR)

ゴムやプラスチック材 料の定性に使用します。

ガスクロマトグラフ(GC)

気体・液体サンプル中の 各成分を分析する装置です。

熱分析装置(TA)

熱示差走査熱量計

示差熱・熱重量同時測定装置

熱機械分析装置

プラスチック等の融点、 比熱などを測定できま す。 試料を加熱,冷却した際の重量変化を測定します。

温度や荷重に対する材料 の機械的特性を測定しま す。

電気測定機器

テスター

デジタルマルチメーター

電圧、電流、抵抗値を測定します。

オシロスコープ

電気波形を測定します。

消費電力を測定します。

非接触で電流値を測定します。

温度測定機器等

サーモグラフィー

カメラで撮影する対象の温度を可視化します。

データロガー

温度等のデータをリアルタイムで記録します。

ハイブリッドレコーダー

温度等のデータを記録します。

放射温度計

非接触で温度測定をします。 (-25~400°C)

(3) 事故調査における基礎知識

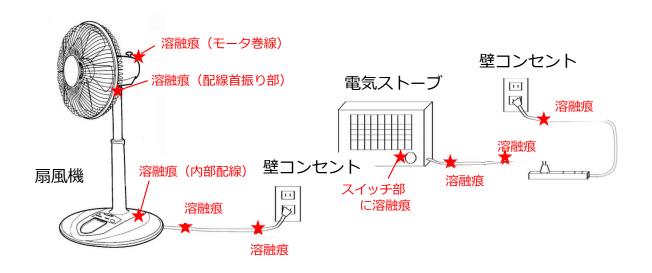
電気製品の製品事故でみられる代表的な特徴 や事象は以下のとおり

- ①電源コードの溶融痕(一次痕・二次痕)
- ②ホコリや水分等によるトラッキング現象
- ③接触不良による異常発熱

(3) ①電源コードの溶融痕について

負荷側

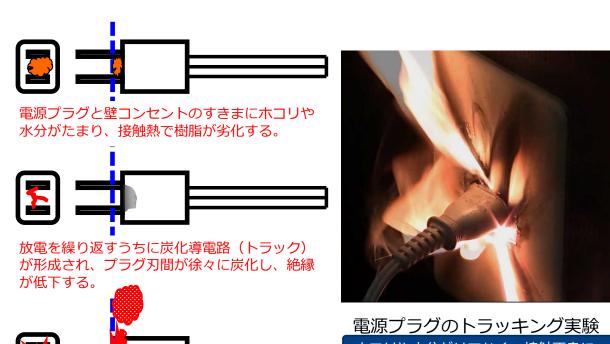
(機器側)


半断線 準線被覆 電線 絶縁被覆 電線 絶縁被覆 電線 線線 を縁続を置い では、 大災熱により被覆が焼損 で記述しています。 一次痕 一次痕

(3) ①電源コードの溶融痕について

- ・溶融痕は、出火元を特定する手段の一つ。
- ・電圧が印可された状態で短絡すると溶融痕が発生。
- ・電源側から最も離れた負荷側の溶融痕が出火元の可能 性が高い。
- ・以下のような箇所に認められることが多い。

(3) ①電源コードの溶融痕について


電源コードの電気的溶融痕 一次痕・二次痕の特徴

	表面の状態	内部の状態
一次痕	・光沢がある ・つるつるしている ・球状	・ボイド(気泡)が 小さい
二次痕	・光沢がない ・ざらざらしている ・球状でない	・ボイドが大きい

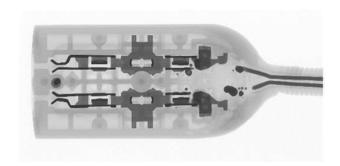
これらの条件を満たしても「一次痕の判定」とはならない。他の情報と合わせ総合的に判断する必要がある。

(3) ②ホコリや水分等によるトラッキング現象について

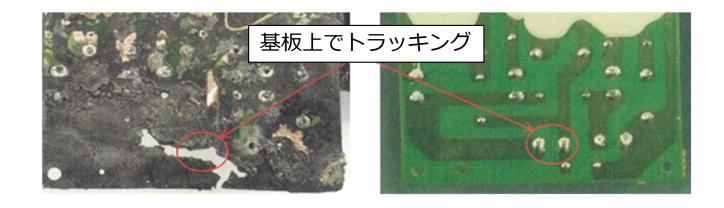
絶縁が保てなくなり、極間短絡し発火する。

ホコリや水分だけでなく、接触不良に よる異常発熱で絶縁体(樹脂)が炭化 し、トラッキング現象に至る場合もあ る。

(3)



(出所) https://www.youtube.com/watch?v=e5U3PtxJ5Hk



(3) ②ホコリや水分等によるトラッキング現象について

マルチタップの内部に水分が浸入

(3) ③接触不良による異常発熱について

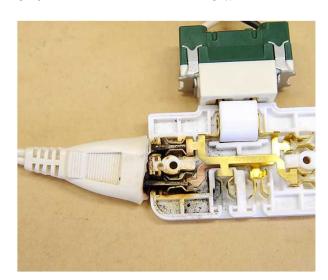
○ファストン端子

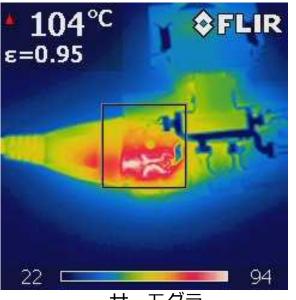
電子部品と配線を接続するときに使用される端子。

端子の接続が適切でなかったり、 配線圧着時に配線の接続が緩かっ たりすることで、カシメ部や接続 部で接触不良が発生する。

○圧着スリーブ

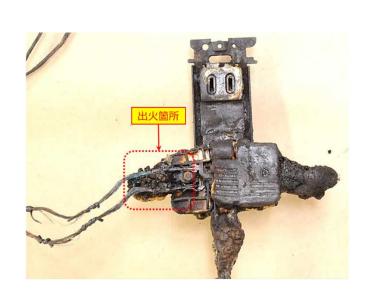
配線どうしを接続するときに使用する金具。圧着して固定するが、圧着力が弱すぎたり、強すぎて配線が断線すると接触不良が発生する。

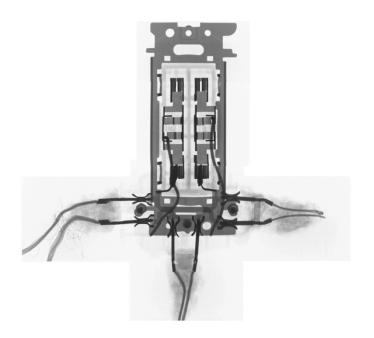




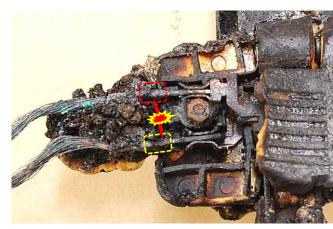
○電源プラグ(栓刃)とコンセント(刃受け金具)

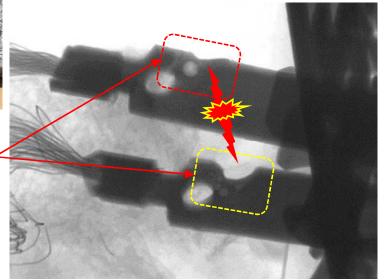
外力等により、差し込み金具や刃受け金具が 変形することで、接触不良が発生する。




サーモグラ フィー

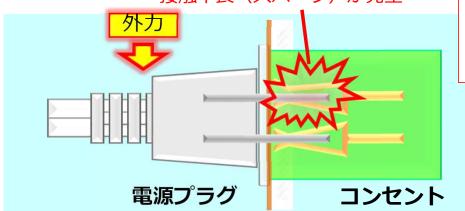
○電源プラグ(栓刃)とコンセント(刃受け金具)

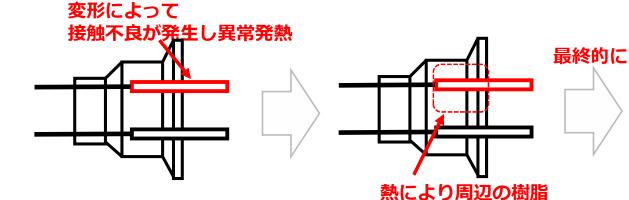

(参考)接触不良からトラッキング現象まで進展してしまったもの



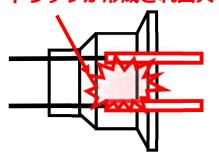
○電源プラグ(栓刃)とコンセント(刃受け金具)(参考)接触不良からトラッキング現象まで進展してしまったもの

両方の栓刃が溶融しており、この箇所 でトラッキングが発生

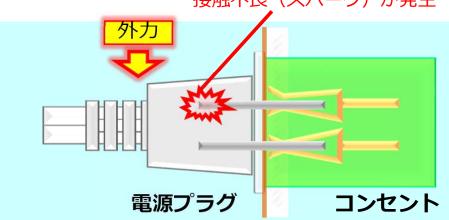



接触不良からトラッキング現象に至るまでのメカニズム

金具の変形により 接触不良 (スパーク) が発生


の絶縁性能が低下

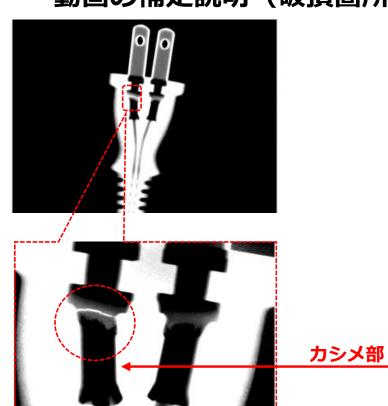
※電源プラグを踏んだり、ズボラ抜き(電源コードを持って引き抜く)をしたりすると変形して同様の事象が発生することがあります



トラックが形成され出火

栓刃の損傷により 接触不良 (スパーク) が発生

※変形した栓刃を無理やり元に戻す等により、電源プラグ内の栓刃が変形、損傷することがあります

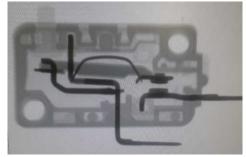

再現実験映像:変形した電源プラグを使用して異常発熱

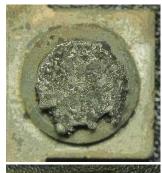
変形した電源プラグを使用して異常発熱

NITE (ナイト)

(3) ③接触不良による異常発熱について動画の補足説明(破損箇所)

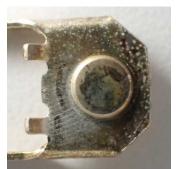
栓刃の根元が破 損し接触不良と なる


> カシメ部が緩んだりして接触 不良が発生することもある。



○マイクロスイッチの接点

接点がオンオフする際のスパーク により徐々に接点が荒れていき、 接触不良が発生する。



荒れていない接点

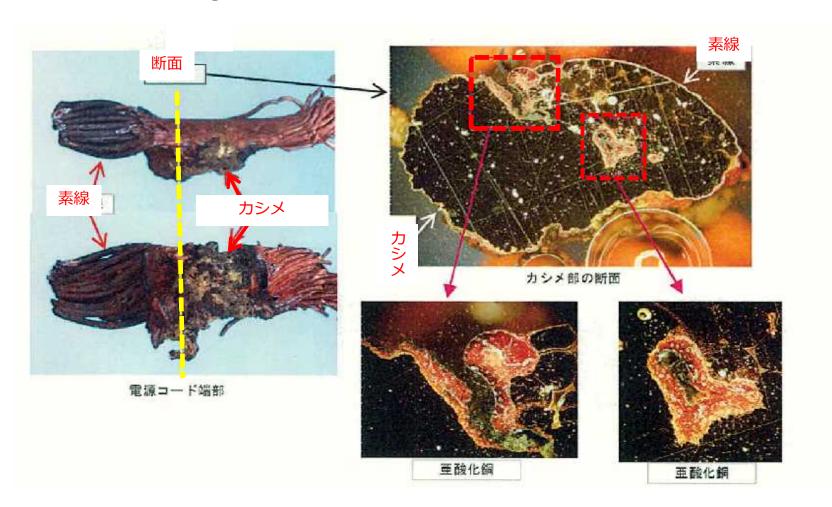
○基板のはんだ付け部

はんだ付けが不適切であったり、温度変化等により、はんだにクラックが入ることで接触不良が発生する。

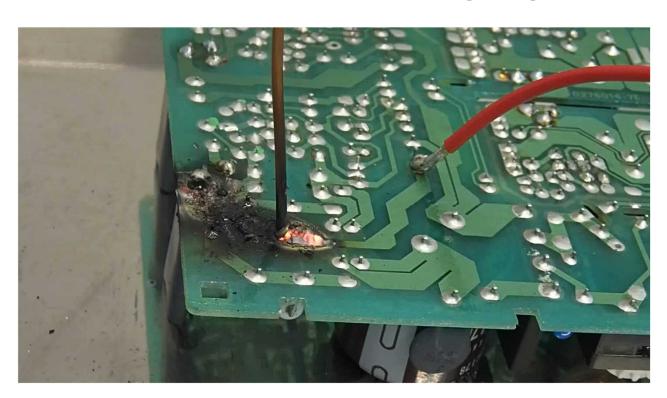
亜酸化銅の増殖発熱現象

電気接続部での接続不良

接続部分でのスパーク等の過熱により 接続部に**亜酸化銅(Cu₂O)**が発生



亜酸化銅は数アンペアの電流でも高熱を発生させる ため周囲の銅が溶けて亜酸化銅が増殖


亜酸化銅の赤熱により周囲の可燃物が出火

(3)③接触不良による異常発熱について

亜酸化銅の増殖発熱現象(再現)

○リチウムイオン電池

リチウムイオンを使った二次電池。

二次電池とは充放電が可能で繰り返し使用できるもの。 ⇔ 一次電池(乾電池)は使い切り。

他の二次電池(二ッケル水素、二カド、鉛蓄電池等)と比べて高容量、高電圧、軽量。

○リチウムイオン電池を搭載した製品

スマートフォン、ノートパソコン、モバイルバッテリー 電動工具、掃除機、電動アシスト自転車、etc.

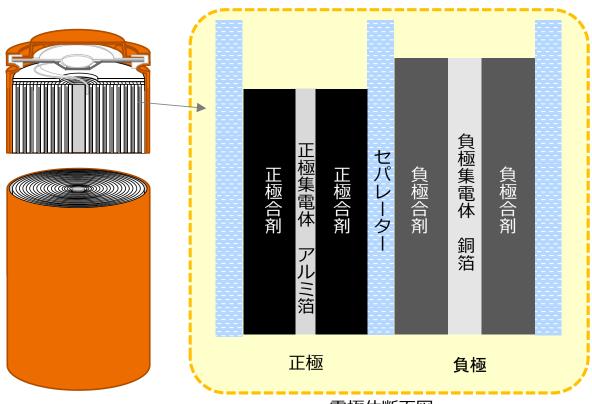
○リチウムイオン電池による事故

近年は普及により事故が増加傾向。元々エネルギーを持っているため、一度発熱すると被害が拡大しやすい。

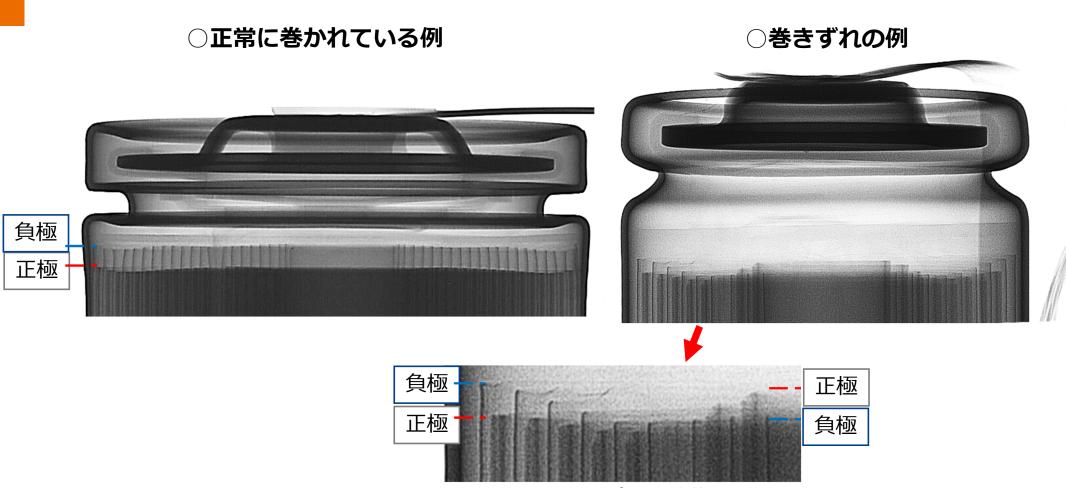
リチウムイオン電池セル (Lithium-Ion Battery Cell)

円筒形

角形

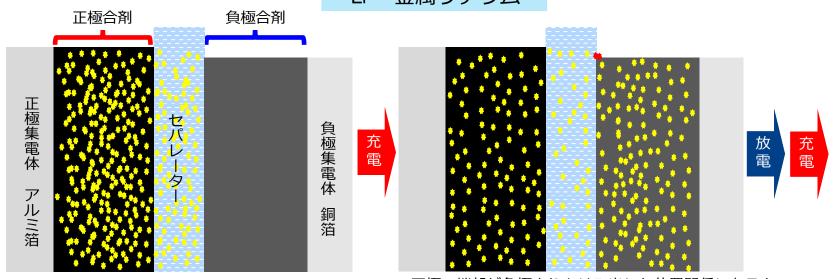


円筒形リチウムイオン電池セルの構造



電極体断面図 正極/セパレータ/負極の位置関係

(4) リチウムイオン電池の事故調査

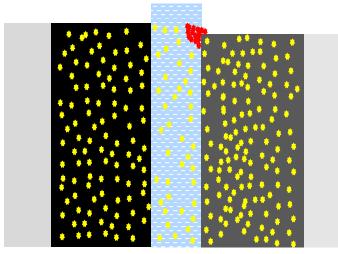


正極と負極が逆転

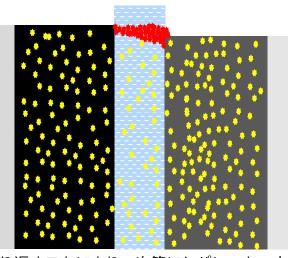
LIB電極体 正極が負極よりもはみ出ていると・・・

* Li* リチウムイオン
* Li 金属リチウム

放電状態ではリチウムイオンは主に 正極合剤の活物質内及び電解質中にある。

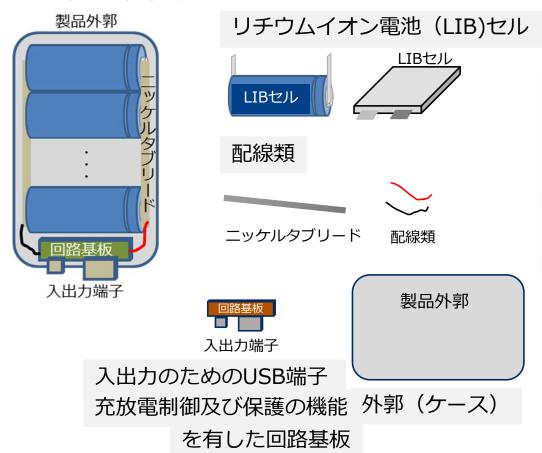

正極の端部が負極よりもはみ出した位置関係にあると、 充電時に負極側に移行したリチウムイオンが負極端部 で電子を受け取り、金属リチウムとして析出する。

LIB電極体 正極が負極よりもはみ出ていると・・・ 推定メカニズム


* Li⁺ リチウムイオン

★ Li 金属リチウム

負極端部に金属リチウムが析出すると、析出した金属リチウムにリチウムイオンが到達するたびに、金属リチウムとして析出する。渋滞、行列のイメージ。

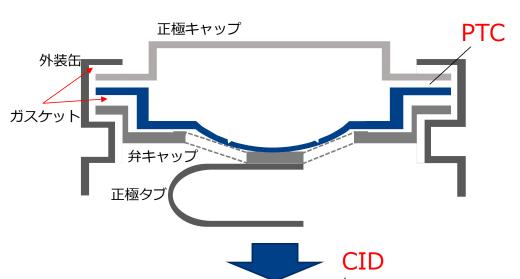


充電を繰り返すことにより、次第にセパレーター内部で金属リチウムの析出範囲が拡大していき、負極と正極が短絡に至る。

短絡によるジュール発熱で析出物が焼き切れても、熱暴走のトリガーとなりうる発熱量がなければ熱暴走には至らない。複数箇所で似たようなタイミングで短絡して、異常発熱、熱暴走のトリガーとなるものと推定。

モバイルバッテリー

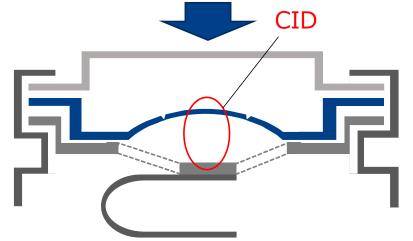
熱暴走のきっかけ

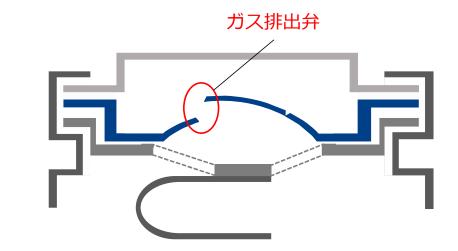

内部短絡	外部短絡
巻きずれ、異物混入、衝撃等	基板や配線の短絡等
過充電	煽り熱
充電制御の不備、充電器誤接続等	電池外部からの加熱等

製品側の対策として、リチウムイオン電池の保護機構や制御基板の保護回路などがある。

(4) リチウムイオン電池の事故調査

○リチウムイオン電池の保護機構


PTC


外部短絡等による過電流を制限する。

電流遮断機構(CID: Current Interrupt Device) 内圧上昇時に切れて物理的に電流を遮断する。

ガス排出弁

内圧上昇時に開いてガスを排出し、内圧を下げて、温度上昇を抑える。

○制御基板の保護回路

充放電制御

ICにより、リチウムイオン電池にかかる電圧を制御する。

過充電保護

過充電にならないように上限の電圧値を設定。

過放電保護

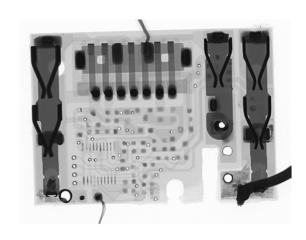
過放電にならないように下限の電圧値を設定。

外部短絡保護

ヒューズを使い、外部短絡時の過電流を遮断する。

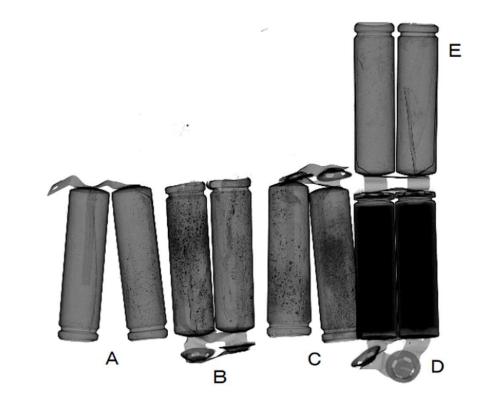
複数の電池を扱う場合、各電池ブロック毎に制御が必要

○非純正バッテリー 事故品


同等品

○制御基板

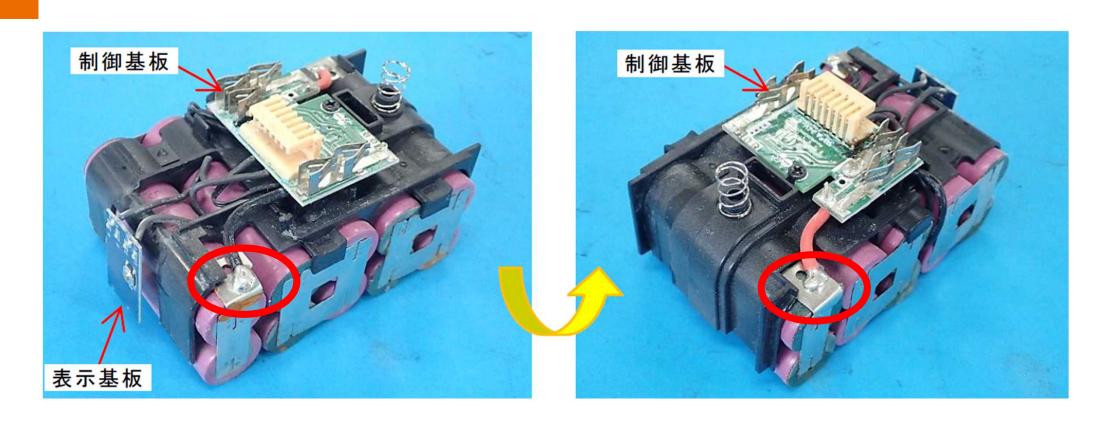
○表示基板



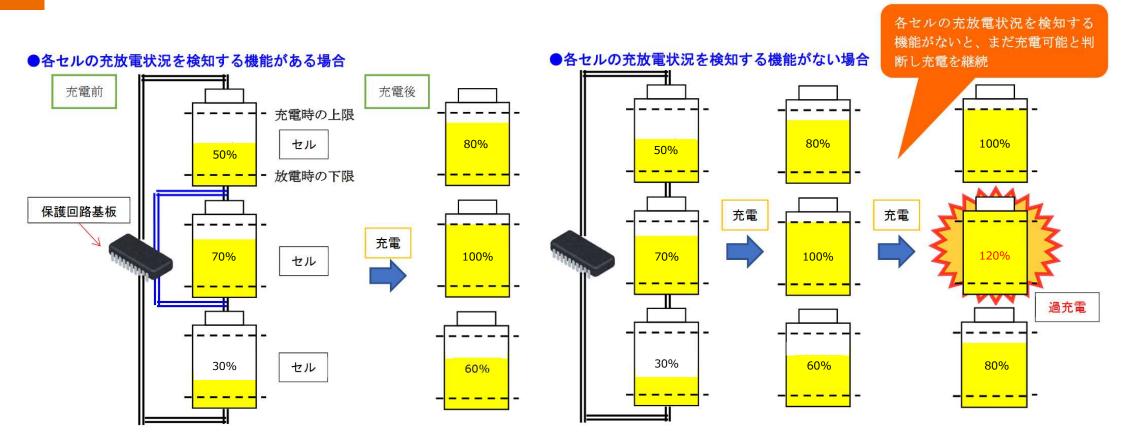
(4) リチウムイオン電池の事故事例

○リチウムイオン電池

本体表示 18V = 3.6V×5



2並列の電池が5直列


(4) リチウムイオン電池の事故事例

(4) リチウムイオン電池の事故事例

内	部	短約	各
	/	_ \	_

巻きずれ、異物混入、衝撃等

過充電

、充電制御の不備、充電器誤接続等

外部短絡

基板や配線の短絡等

煽り熱

電池外部からの加熱等

電気用品安全法の「技術基準解釈(別表第九)」の改正

令和4年12月28日から国際規格(別表第十二)に対応 各電池ブロックの電圧監視について明示している

〈経済産業省 HPより〉

https://www.meti.go.jp/policy/consumer/seian/denan/file/04 cn/t s/20130605 3/outline/kaiseigaiyou221228 b9 shinsakizyun.pdf

ご清聴ありがとうございました