電線の一・二次被熱条件別サンプル集

平成21年2月 独立行政法人 製品評価技術基盤機構

まえがき

私たちの生活の場には、多種多様な製品が流通し、身近なところで製品に関する 事故が起こっています。独立行政法人製品評価技術基盤機構(NITE)は、日常生 活で起こるこれらの事故を防ぎ、国民のくらしの安全と安心を守るために、経済産業 省所管の消費生活用製品に係わる事故情報を消費者、消費生活センター、消防・ 警察、業界団体などの協力を得て収集し、調査・分析を実施しております。

また、その調査結果は、NITEホームページや事故情報収集制度報告書として広 く提供、また、公表することにより、製品事故の再発・未然防止に繋げているほか、製 品設計・製造方法などの改善命令、市場に出回った製品の回収命令などの法律に 基づく国の措置に反映してきているところであります。

NITEでは、事故情報に基づき製品事故の再発・未然防止の観点から原因調査 を行い、必要により原因究明のためのテストを実施しておりますが、NITE北関東支 所では、家電製品の発火・燃焼事故の原因究明に必要となる、発火箇所を科学的 に推定する技術等の開発を大学及び企業等の専門家の助言を得て実施してきてお ります。

これらの開発した技術については、技術マニュアルを作成し、平成17年8月に「家 電製品の発火事故原因究明マニュアルII」としてまとめ、関係機関に広く提供し活 用いただいてきておりますが、発火事故原因の究明においてはできるだけ多くの周 辺情報を集める必要があることも改めて認識してきているところです。

本サンプル集は、火災現場などでも焼け残ることが多い電線に着目し、こうした焼 損電線の観察及び解析を行う際の参考資料として用いることを目的として、実験的 に被熱条件を与えて痕跡サンプルを作製し、その特徴を抽出、整理するとともに、 痕跡写真を掲載してとりまとめたものです。

製品事故の再発・未然防止のための原因究明の際に、技術参考資料として広くご 活用いただければ幸いです。

独立行政法人製品評価技術基盤機構 北関東支所

目 次

<本 文>

-		-
1.	週用範囲 ************************************	1
2.	用語及び定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.1	痕跡サンプル写真 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.2	一次被熱 ••••••	1
2.3	二次被熱	1
2.4	火炎曝露	1
3.	痕跡の区分、記号、種類及び特徴 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.1	主として一次被熱条件の痕跡	1
3.2	主として二次被熱条件の痕跡	1
3.3	一次被熱条件及び二次被熱条件の両方で	
	認められた痕跡 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
4.	痕跡サンプル写真集 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
5.	痕跡サンプルの作製方法及び解析結果 ・・・・・・・・・・・	2
6.	参照方法 ·····	2
6.1	A1~A4の記号で表す痕跡が認められる場合 ・・・・・・・・・	2
6.2	B1~B3の記号で表す痕跡が認められる場合 ・・・・・・・・・	2
6.3	C1又はC2の記号で表す痕跡が認められる場合 ・・・・・・	2
7.	痕跡サンプル写真集の見方 ・・・・・・・・・・・・・・・・・・・・・	3

<附属資料1 痕跡サンプル写真集>

痕跡サンプル インデックス

A 1	線径の減少 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
A 2	表面荒れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
АЗ	心線表面の銅化合物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
A 4	素線間の銅化合物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	49
В1	折損、亀裂、粒界割れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
В2	線間溶出	78
В3	線間溶着	83
C 1	緑 青 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
C 2	ルビー色の生成物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	16

<附属資料2 痕跡サンプルの作製方法及び解析結果>					
1.	試 料	1			
2.	作製方法	1			
2.1	一次被熱サンプル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1			
2.2	火炎曝露	2			
2.3	二次被熱サンプル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3			
3.	解析方法	3			
4.	解析結果	4			
4.1	線径の減少 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6			
4.2	表面荒れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7			
4.3	心線表面の銅化合物(試料No.1) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9			
4.4	素線間の銅化合物(試料No.2~4) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10			
4.5	折損、亀裂、粒界割れ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12			
4.6	線間溶出	15			
4.7	線間溶着	15			
4.8	緑 青	16			
4.9	ルビー色の生成物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17			
5.	まとめ・・・・・	19			

電線の一・二次被熱条件別サンプル集

本サンプル集は、家電製品の発火事故原因究明において、焼損した電線各部の観察及び解析を行う際の参考資料として用いるものである。

1. 適用範囲

本サンプル集は、絶縁被覆が主としてポリ塩化ビニル^{注1)}、公称断面積が0.75~1.25mm²程度の 撚線^{注2)}、又は線径が1.6~2.6mm程度の単線であって、主として一般住宅火災^{注3)}において回収 されたものに適用する。

- 注1:本サンプル集に掲載する痕跡の作製に用いた試料電線の被覆が、主にポリ塩化ビニルであり、一部クロロプレン ゴム、耐熱性ポリエチレンであることから、これら以外の被覆電線であって、本サンプル集に掲載の痕跡サンプ ル写真と明らかに異なる特徴を示すものは対象外とし、酷似の特徴を示すものは参考考察に留めるものとする。
- 注 2: 撚線の素線径及び素線数は、本サンプル集に掲載する痕跡の作製に用いた試料電線が、素線径 0.18 mm×30 本で あることから、これよりも極端に細い素線径又は太い素線径のもの、並びに極端に少ない素線数又は多い素線数 のものであって、本サンプル集に掲載の痕跡サンプル写真と明らかに異なる特徴を示すものは対象外とし、酷似 の特徴を示すものは参考考察に留めるものとする。
- ≪備考≫ 絶縁被覆の分解によって発生する腐食性ガス、酸化・還元性ガス等の種類や量は、焼損電線の表面荒れの程度、素線間化合物の組成・量、酸化層の深さ等のほか、毛細管現象によって撚線内部に浸透し、また、ヒートサイクルによって浸透位置や濃度を変えながら素線に作用し、焼損電線の特有形状等の形成に大きな影響を及ぼしていると考えられるため、注1、2において対象外としているものである。
- 注3:火災時の被熱時間を各種工法住宅の火災実験における温度変化^{※)}からみると、軽量PC住宅(床上180cm)で800 ~900℃の継続時間約10分、在来木造住宅(床上60cm)で700~800℃の継続時間約10分、2"×4"一般住宅 (床上210cm)で800~1000℃の継続時間約5分、2"×4"公住形住宅(天井面下60cm)で700~800℃の継続 時間約7分などであり、本サンプル集に掲載する痕跡の加熱実験は、一般住宅火災の条件としてこの火災温度・ 時間を想定して設定していることから、大型ビル火災や工場・化学プラントなどの大規模火災による焼損電線は 対象外とする。
- ※):日本火災学会:火災便覧第3版,1997

2. 用語及び定義

本サンプル集において用いる用語及びその定義は以下のとおりとする。

2.1 痕跡サンプル写真 附属資料1に掲載した写真で、5.痕跡サンプルの作製方法によって作 製した痕跡の特徴を抽出・整理したものをいう。

- 2.2 一次被熱 出火前の異常発熱による電線の一次的な被熱をいう。
- 2.3 二次被熱 火災の炎や輻射熱による電線の二次的な被熱をいう。
- 2.4 火炎暴露 一次被熱試料を模擬火災実験の火炎に暴露させることをいう。
- 3. 痕跡の区分、記号、種類及び特徴

本サンプル集に掲載する痕跡サンプル写真の区分、記号、種類及び特徴は、表1に示すとおり で、区分、記号の概要は以下のとおりである。

3.1 主として一次被熱条件の痕跡

A 1 ~ A 3 の記号で表す痕跡は、5. に示すサンプル作製実験のうち、主として一次被熱条件で認められ、火炎暴露によっても容易に焼失せず、二次被熱条件では特殊条件下でないと生じにくいと考えられた^{±4)}ものである。

注4(二次被熱条件では特殊条件下でないと生じにくいと考えられた):

例えば、二次被熱サンプルにおいて著しい線径の減少が認められたのは、電気炉加熱のうち400℃60分及び600℃ 30分以上の条件であり、各種工法住宅の火災温度・時間^{注3)}からみれば一般的な住宅火災では想定され難い長時間の加熱条件設定においてのみであり、その他の電気炉加熱条件、クリブ及びバーナによる加熱条件では認められなかった。その他、表面荒れ、折損、線間溶出、線間溶着でも類似の傾向が認められた(附属資料2の4頁「表 4 解析結果の概要」参照)。

3.2 主として二次被熱条件の痕跡

B1~B6の記号で表す痕跡は、5. に示すサンプル作製実験のうち、主として二次被熱条件で認められ、一次被熱条件では認められなかったものである。

3.3 一次被熱条件及び二次被熱条件の両方で認められた痕跡

Cの記号で表す痕跡は、5. に示すサンプル作製実験のうち一次被熱条件及び二次被熱条件 の両方で認められたものである。

区分	記号	種類	特徵
	A1	線径の減少	銅線の線径が著しく減少した状態。 撚り線試料では断線部に向かってテーパー状に痩せた状態も含む。
主として	A2	表面荒れ	銅線の表面が著しく凸凹に荒れた状態。
の痕跡	A3	心線表面の 銅化合物	単線試料で銅線の表面に層状に化合物が生じている状態。
	A4	素線間の銅化合物	撚り線試料で素線同士の間に化合物が生じている状態。
主として	B1	折損、亀裂、 粒界割れ	折り曲げようとすると容易に折れたり内部の銅線表面に亀裂が生じた りする状態。また、銅線の断面を観察した際に結晶粒同士の境界で割 れが生じている状態。
二次被熱 の痕跡	B2	線間溶出	外観又は断面観察で銅が素線外に溶出しているのが観察される 状態。
	B3	線間溶着	二次被熱サンプルの撚り線試料で、部分的に素線同士が溶着して素 線の分離が困難になっている状態。
一次及び二次	C1	緑青	発火後の断線部近傍、火炎曝露後の電線表面に生じる緑青。
被熱条件の 痕跡	C2	ルビー色の生成物	銅線表面に生じた亜酸化銅と考えられるガラスのような透明感のある 赤い層。

表1 痕跡の区分、記号、種類及び特徴

4. 痕跡サンプル写真集

附属資料1に示す。

- 5. 痕跡サンプルの作製方法及び解析結果 附属資料2に示す。
- 6. 参照方法

本痕跡サンプル写真の参照方法は、以下に示すとおりである。 参照に際しては、必ず、周辺可燃物等の配置状況、事故発生前の時系列情報、火災発生時の状況等の情報を入手し、これらの状況証拠と照らし合わせて総合的に判断する必要がある。

6.1 A1~A4の記号で表す痕跡が認められる場合

当該痕跡の発生部位が、異常発熱が疑われる局部的な箇所であって、他の状況証拠との 一致がみられれば、当該痕跡部位が異常発熱状態にあったとの推定に繋がる。

他方、当該痕跡が局部的でなく広範囲に観察される場合には、慎重に他の状況証拠と照 らし合わせ、特殊条件下^{注4)}の火災によって生じた可能性を疑う必要がある。

6.2 B1~B3の記号で表す痕跡が認められる場合

当該痕跡が広範囲に観察され、他の状況証拠との一致がみられれば、当該痕跡は火災時の火炎によって生じたとの推定に繋がる。

なお、痕跡サンプルの作製条件との比較により、火災現場での大よその被熱条件推定に 繋がる場合も考えられる。

6.3 C1~C2の記号で表す痕跡が認められる場合

当該痕跡のみによってー・二次被熱の判断はできない。

7. 痕跡サンプル写真集の見方

以下の図にサンプル集の見本を示す。

図 痕跡サンプル写真ページの見本

<痕跡の出現性>

痕跡サンプル写真のラベル右に付記した★印は、実験データ及び「各種工法住宅の火災温度・時間」^{注3)}から、主観的にではあるが出現性の予測を参考までに示したもの。

★★★ よく観察される
 ★★ 希に観察される
 ★ 特殊条件下^{注4)} でないと観察されない

附属資料 1

<u>痕跡サンプル写真集</u>

<u>痕跡サンプルインデックス</u>

記号	痕跡の種類	サンプル№.	試料	被熱条件	痕跡の 出現性	頁
		A1-1	No.1 VVF 1.6 ϕ	一次被熱(接続不良) → 火炎曝露	***	1
		A1-2	No.2 VFF 0.75mm ²	一次被熱(接続不良) → 火炎曝露	$\star\star\star$	3
		A1-3	No 3 NNEE 0 75 mm ²	一次被熱(接続不良)	***	6
		A1-4	No 4 EM-ECTE 0 75mm ²	一次被勢(接続不良)	**	8
		A1-5	No.1 VVF 16 <i>Φ</i>	一次被執(雷气炬加執)	÷	9
		A1 - 6	No 1 VVF 16 ϕ		÷	10
		A1 - 7	No. 1 VVI 1.0 φ	一次放款(电头)加款)	î	11
A 1	始なの述小		NU.2 VFF 0.75mm $\frac{2}{2}$	一久秋然(电幻》加款)	<u>î</u>	10
AI	称住の減少	A1-8	N0.2 VFF 0.75mm	——次饭款(电式)/加款/	·····	12
		A1-9	N0.2 VFF 0./5mm ⁻		X	13
		A1-10	No.3 NNFF 0.75mm ²	二次被熱(電気炉加熱)	*	14
		A1-11	No.3 NNFF 0.75mm ²	二次被熱(電気炉加熱)	*	15
		A1-12	№.3 NNFF 0.75mm ²	二次被熱(電気炉加熱)	*	16
		A1-13	No.4 EM-ECTF 0.75mm ²	二次被熱(電気炉加熱)	*	17
		A1-14	No.4 EM-ECTF 0.75mm ²	二次被熱(電気炉加熱)	*	18
		A1-15	No.4 EM-ECTF 0.75mm ²	二次被熱(電気炉加熱)	*	19
		A2-1	No.1 VVF 1.6φ	一次被熱(接続不良)	$\star\star\star$	20
		A2-2	No.1 VVF 1.6 ϕ	一次被熱(接続不良) → 火炎曝露	$\star\star\star$	22
		A2-3	No.2 VFF 0.75mm ²	一次被熱(過電流) → 火炎曝露	$\star\star\star$	24
	表面荒れ	A2-4	N 0.3 NNFF 0.75mm ²	一次被熱(過電流)	$\star\star\star$	26
		A2-5	No.3 NNFF 0.75 mm ²	一次被熱(過電流) → 火炎曝露	$\star\star\star$	28
		A2-6	No 4 EM-ECTE 0 75mm ²	一次被熱(接続不良) → 火炎曝露	***	31
A2		A2-7	Nn 1 VVF 16 <i>φ</i>	二次被執(雷气炉加埶)	$\dot{\star}$	33
		A2-8	No.1 VVF 16 d		÷	34
		A2 0	No. 1 VVI 1.0 φ	一次放款(电外》加款)	<u>î</u>	25
		A2-9	N0.2 VFF 0.75mm		····· ``	30
		A2-10	No.2 VFF 0.75mm ⁻	一次被熱(電気炉加熱)	×	36
		A2-11	No.3 NNFF 0.75mm ²	二次被熱(電気炉加熱)	*	37
		A2-12	No.4 EM-ECTF 0.75mm ²	二次被熱(電気炉加熱)	*	38
		$\Delta 3 - 1$	No 1 VVF 16 か	一次被執(接続不良)	+++	39
		<u>^</u> 2_2	No.1 VVI 1.0 φ	一次放然()及机()及)	<u> </u>	42
A3	心線表面の銅化合物	A3-2	No. 1 VVF 1.0 φ	人似然(按视个皮) 一次地劫(按结天白)、山火喝雪		42
		A3-3			XXX	44
		A3-4	NO.1 VVF 1.6Φ	二次被熱(電気炉加熱)	*	4/
		A4-1	No 2 VEE 0.75mm ²	一次被熱(渦電流)	$\star\star\star$	49
		A4-2	No 2 VEE 0.75mm ²	一次被執(接続不良)	$\star \star \star$	52
		$\Delta 4 - 3$	No.2 VIT 0.75 mm ²	- 次 補執 (過 雷 法) → 小 必 唱 雷	ŶŶŶ	54
					1111	54
A 4	実始問の纪ルム版	A4-4	NU.3 NNFF U./5mm			50
A4	糸球间の蚵10合物	A4-5	NO.3 NNFF 0.75mm ⁻		XXX	58
		A4-6	No.3 NNFF 0.75mm ²	一次做熟(接続个良) → 火炎曝露	***	60
		A4-7	№.2 VFF 0.75mm ²	二次被熱(電気炉加熱)	*	63
		A4-8	No.2 VFF 0.75mm ²	二次被熱(電気炉加熱)	$\star\star\star$	64
		A4-9	No.3 NNFF 0.75mm ²	二次被熱(電気炉加熱)	*	65

B1 B1-1 No.1 VVF 16.0 二次披熱(電気炉加熱) ★★★ 66 B1-2 No.1 VVF 16.0 二次披熱(電気炉加熱) ★★★ 66 B1-3 No.1 VVF 16.0 二次披熱(電気炉加熱) ★★★ 68 B1-4 No.1 VVF 16.0 二次披熱(電気炉加熱) ★★★ 68 B1-5 No.3 NNFF 0.75mm2 二次披熱(マーナ加熱) ★★★ 69 B1-7 No.3 NNFF 0.75mm2 二次披熱(マーナ加熱) ★★★ 71 B1-8 No.3 NNFF 0.75mm2 二次披熱(電気炉加熱) ★ 72 B1-9 No.3 NNFF 0.75mm2 二次披熱(電気炉加熱) ★ 74 B1-9 No.3 NNFF 0.75mm2 二次披熱(電気炉加熱) ★ 75 B1-10 No.4 EM-ECTF 0.75mm2 二次披熱(電気炉加熱) ★ 77 B2-2 No.1 VVF 16.0 二次披熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm2 二次披熱(電気炉加熱) ★ 80 S3-4 No.2 VFF 0.75mm2 二次披熱(電気炉加熱) ★ 82 B3-4 No.2 VFF 0.75mm2 二次披熱(マリアグ加熱) ★ 83
B1 B1-2 No.1 VVF 1.6.0 二次被熱(電気炉加熱) ★ 67. B1-3 No.1 VVF 1.6.0 二次被熱(電気炉加熱) ★ 68. B1-4 No.3 NNFF 0.75mm2 二次拨熱(マーケ加熱) ★★★ 69. B1-5 No.3 NNFF 0.75mm2 二次拨熱(マーケ加熱) ★★★ 69. B1-5 No.3 NNFF 0.75mm2 二次拨熱(マーケ加熱) ★★★ 71. B1-6 No.3 NNFF 0.75mm2 二次拨熱(マーケ加熱) ★★★ 77. B1-7 No.3 NNFF 0.75mm2 二次拨熱(電気炉加熱) ★ 73. B1-9 No.3 NNFF 0.75mm2 二次拨熱(電気炉加熱) ★ 75. B1-9 No.3 NNFF 0.75mm2 二次拨熱(電気炉加熱) ★ 75. B1-9 No.3 NNFF 0.75mm2 二次拨熱(電気炉加熱) ★ 75. B1-9 No.3 NNFF 0.75mm2 二次拨熱(電気炉加熱) ★ 76. B2 No.1 VVF 1.6.0 二次拨熱(電気炉加熱) ★ 77. B2-3 No.2 VFF 0.75mm2 二次拨熱(電気炉加熱) ★ 78. B3-1 No.2 VFF 0.75mm2 二次拨熱(電気炉加熱) ★ 78. B3-1 No.2 VFF 0.75mm2 二次拨熱(電気炉加熱) ★ 78. B3-1 No.2 VFF 0.75mm2 二次拨熱(空気炉加熱) ★
B1 B1-3 Nu.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★★★ 68 B1 Mag NNFF 0.75mm2 二次被熱(マ)ワブ炉加熱) ★★★ 69 B1-5 Na.3 NNFF 0.75mm2 二次被熱(マ)ワブ炉加熱) ★★★ 69 B1-6 Na.3 NNFF 0.75mm2 二次放熱(マ)ワブ炉加熱) ★★★ 72 B1-7 Na.3 NNFF 0.75mm2 二次放熱(電気炉加熱) ★ 73 B1-9 Na.3 NNFF 0.75mm2 二次放熱(電気炉加熱) ★ 77 B1-9 Na.3 NNFF 0.75mm2 二次放熱(電気炉加熱) ★ 77 B1-9 Na.3 NNFF 0.75mm2 二次放熱(電気炉加熱) ★ 77 B2 Mall W/F 0.60 二次放熱(電気炉加熱) ★ 76 B2-1 Na.1 V/F 1.6 φ 二次放熱(電気炉加熱) ★ 78 B2-3 Na.2 VFF 0.75mm2 二次放熱(電気炉加熱) ★ 78 B2-3 Na.2 VFF 0.75mm2 二次放熱(小一力加熱) ★★★ 80 B3-4 Na.2 VFF 0.75mm2 二次放熱(小一力加熱) ★★★ 82 B3-5 Na.2 VFF 0.75mm2 二次放熱(小一力加熱) ★★★ 83 B3-6 Na.3 NNFF 0.75mm2 二次放熱(小一力加熱) ★★★ 84
B1 馬1-4. No.3 NNFE 0.75mm ² 二次被熱(2)ブグ炉加熱) ★★★ 69 B1-5. No.3 NNFE 0.75mm ² 二次被熱(2)ブゲ加熱) ★★★ 71 B1-5. No.3 NNFE 0.75mm ² 二次被熱(電気炉加熱) ★ 73 B1-7. No.3 NNFE 0.75mm ² 二次被熱(電気炉加熱) ★ 73 B1-9 No.3 NNFE 0.75mm ² 二次被熱(電気炉加熱) ★ 75 B1-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 76 B2 總間溶出 B2-1 No.1 VVF 1.6 <i>o</i> 二次被熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 80 B3-1 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 81 B3-2. No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 82 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 84 B3-7.1 No.4 EM-ECTF 0.75m
B1 折損、亀裂、粒界割れ
B1 ●11年6、和37644 ●11-6 №3 NNFF 0.75mm ² 二次被熱(元ナ加熱) ★ 72 B1 -7. №3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ 73 B1 -9. №3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ ** B1 -9. №3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ ** B1 -9. №3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ ** B2 線間溶出 B2-1 №1 VVF 1.6.0 二次被熱(電気炉加熱) ★ ** B2 ※間溶出 B2-1 №1 VVF 1.6.0 二次被熱(電気炉加熱) * ** B2 №1 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 80 B3 83-11 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 80 B3-3 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 83 B3-4 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 85 B3-5 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 86 B3-71 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 87 B3-71 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) * *** 89 B
B1-7. №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ 73 B1-8. №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 74 B1-9 №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 76 B1-10 №.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 76 B2 線間溶出 B2-1 №.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★★★ 80 B2 88 B2-2 №.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★★★ 80 B2 83-1 №.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 80 B3 83-1 №.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 83 B3-3 №.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 83 B3-4 №.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 №.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-6 №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-7 №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-7 №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87 B3-7 №.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87 B3-10 №.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★ 90 <tr< td=""></tr<>
B1-8 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 74 B1-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ 75 B1-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 76 B2 線間溶出 B2-1 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 77 B2-2 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 82 B3-1 No.2 VFF 0.75mm ² 二次被熱(マリブ炉加熱) ★★★ 82 B3-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 82 B3-4 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-6 No.3 NNFF 0.75mm ² 二次被熱(マリブ炉加熱) ★★★ 87 B3-7 No.3 NNFF 0.75mm ² 二次被熱(マ大熱(マーケ加熱)) ★★★ 89 B3-6 No.3 NNFF 0.75mm ² 二次被熱(マ大熱(マーケ加熱)) ★★★ 89 B3-10 No.4 EM-ECTF 0.75mm ²
B1-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ 75 B1-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 76 B2 線間溶出 B2-1 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 77 B2 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 80 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 80 B3-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 82 B3-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 82 B3-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 82 B3-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 82 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 83 B3-6 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 85 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 87 B3-8 No.3 NNFF 0.75mm ² 二次被赦(電気炉加熱) ★ ★★ 87 B3-9 No.3 NNFF 0.75mm ² 二次被赦(電気炉加熱) ★ ★★ 89 B3-11 No.4 EM-ECTF 0.75mm ² 二次被赦(電気炉加熱) ★ ★ 90 B3-13 No.4 EM-ECTF 0.75mm ² 二次被赦(電気炉加熱) ★ ★ 91
B1-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 76 B2 線間溶出 B2-1 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 77. B2 線間溶出 B2-2 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 78. B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 80 B3-1. No.2 VFF 0.75mm ² 二次被熱(マーブ加熱) ★★★ 80 B3-3. No.2 VFF 0.75mm ² 二次被熱(マーブ加熱) ★★★ 82. B3-3. No.2 VFF 0.75mm ² 二次被熱(マーブ加熱) ★★★ 83. B3-4. No.2 VFF 0.75mm ² 二次被熱(マ板)(マーブ加熱) ★★★ 84. B3-5. No.2 VFF 0.75mm ² 二次被熱(マ大教教)(マーブ加熱) ★★★ 86. B3-6. No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87. B3-7. No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87. B3-7.1 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87. B3-7.1 No.4 EM-ECTF 0.75mm ² 二次被熱(マ大教)(マ大教) ★3.
B2 線間溶出 B2-1 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 77 B2-2 No.1 VVF 1.6 φ 二次被熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 80 B3 B3-1 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 82 B3-2 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 82 B3-3 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 83 B3-4 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 84 B3-4 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 85 B3-5 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 86 B3-6 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-7 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-10 No.4 EM-ECTF 0.75mm ²
B2 線間溶出 10.1 VVF 1.6.φ 二次被熱(電気炉加熱) ★ 78 B2-3 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 80 B3 B3-1 No.2 VFF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 82 B3-2 No.2 VFF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 83 B3-3 No.2 VFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 83 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-6 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 88 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 92 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 92 B3-14 No.4 EM-ECTF 0.75mm ²
B2 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 80 B3 B3-1 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 82 B3-2 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 83 B3-2 No.2 VFF 0.75mm ² 二次被熱(ペーナ加熱) ★★★ 83 B3-3 No.2 VFF 0.75mm ² 二次被熱(ペーナ加熱) ★★★ 84 B3-4 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 88 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 4 93 B3-12 <td< td=""></td<>
B3 B3-1 No.2 VFF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 82 B3-2 No.2 VFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 83 B3-3 No.2 VFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 83 B3-3 No.2 VFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 83 B3-4 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-6 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 88 B3-8 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(マ被熱(パーナ加熱) ★ 93 93 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 94 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二
$B3 = \frac{B3-1}{R} + \frac{B3-1}{R} + \frac{R2}{R} + \frac{R3}{R} + $
B3 - No.2 VFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 83 B3-3 No.2 VFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 84 B3-4 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-6 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 87 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 88 B3-7 No.3 NNFF 0.75mm ² 二次被熱(で電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(で電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(で電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(で電気炉加熱) ★★★ 90 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(で一ナ加熱) ★ 91 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(で気力加熱) ★ 93 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 93 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱)
$B3 = \frac{1}{3} \frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{2}{2} \frac{1}{2} \frac{1}{2}$
B3-4 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 85 B3-5 №2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 86 B3-6 №3 NNFF 0.75mm ² 二次被熱(でしつが加熱) ★★★ 87 B3 83-7 №3 NNFF 0.75mm ² 二次被熱(でしつが加熱) ★★★ 88 B3-7 №3 NNFF 0.75mm ² 二次被熱(でしつが加熱) ★★★ 89 B3-7 №3 NNFF 0.75mm ² 二次被熱(で気炉加熱) ★★★ 89 B3-9 №3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-10 №4 EM-ECTF 0.75mm ² 二次被熱(でしつが加熱) ★ 90 B3-11 №4 EM-ECTF 0.75mm ² 二次被熱(でしつが加熱) ★ 91 B3-12 №4 EM-ECTF 0.75mm ² 二次被熱(でしつが和熱) ★ 92 B3-13 №4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 93 B3-14 №4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 №4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 №4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-2 №1 VVF 1.6 0 — 二次被熱(接続
B3 B3-5 No.2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 86 B3-6 No.3 NNFF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 87 B3 B3-7 No.3 NNFF 0.75mm ² 二次被熱(パーナ加熱) ★★★ 88 B3-7 No.3 NNFF 0.75mm ² 二次被熱(マーナ加熱) ★★★ 88 B3-7 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(でーナ加熱) ★ 90 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 91 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(ボ気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 97 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 97 C1-2 No.1 VVF 1.
B3 - 6 No.3 NNFF 0.75mm ² 二次被熱(グリブ炉加熱) ★★★ 87 B3-7 No.3 NNFF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 88 B3-8 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 91 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 91 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 92 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(ボーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 94 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103
B3 $B3-7$ No.3 NNFF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 88 B3 B3-8 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 89 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 90 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 92 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 92 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 103 C1-5
B3<線間溶着
B3-9 No.3 NNFF 0.75mm ² 二次被熱(電気炉加熱) ★ 90 B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 91 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 91 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(バーナ加熱) ★★★ 92 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(ボーナ加熱) ★ 93 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 94 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 103 C1-5 No 2 NNEF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 105
B3-10 No.4 EM-ECTF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 91 B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★★ 92 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 94 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 94 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.1 VVF 1.6 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No 2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 105
B3-11 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★★ 92 B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 94 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No 2 VFF 0.75mm ² 一次被熱(違電流) → 火炎曝露 ★★★ 105
B3-12 No.4 EM-ECTF 0.75mm ² 二次被熱(パーナ加熱) ★ 93 B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 94 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ ★★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.1 VVF 1.6 φ -次被熱(接続不良) → 火炎曝露 ★ ★★ 97 C1-2 No.1 VVF 1.6 φ -次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² -次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² -次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No 2 VFF 0.75mm ² -次被熱(違電流) → 火炎曝露 ★★★ 103
B3-13 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 94 B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No 2 VFF 0.75mm ² 一次被熱(違電流) → 火炎曝露 ★★★ 105
B3-14 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 95 B3-15 No.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 No.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No.2 VFF 0.75mm ² 一次被熱(違電流) → 火炎曝露 ★★★ 105
B3-15 №.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★ 96 C1-1 №.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 №.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 №.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 №.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 №.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 103
C1-1 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 97 C1-2 No.1 VVF 1.6 ϕ 一次被熱(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 103
C1-2 No.1 VVF 1.5 ϕ 一次被熬(接続不良) → 火炎曝露 ★★★ 99 C1-2 No.1 VVF 1.6 ϕ 一次被熬(接続不良) → 火炎曝露 ★★★ 99 C1-3 No.2 VFF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 No.2 VFF 0.75mm ² 一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No.2 NNEE 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★★ 103
C1-2 N0.1 VVF 1.6 ϕ 一次被熬(接続不良) → 火災曝露 ★★★ 99 C1-3 N0.2 VFF 0.75mm ² 一次被熱(接続不良) → 火災曝露 ★★★ 101 C1-4 N0.2 VFF 0.75mm ² 一次被熱(過電流) → 火災曝露 ★★★ 103 C1-5 No.2 NNEE 0.75mm ² 一次被熱(接続不良) → 火災曝露 ★★★ 103
C1-3 N0.2 VFF 0.75mm ² (一次被熱(接続不良) → 火炎曝露 ★★★ 101 C1-4 N0.2 VFF 0.75mm ² (一次被熱(過電流) → 火炎曝露 ★★★ 103 C1-5 No.2 NNEE 0.75mm ² (一次被熱(接続不良) → 火炎曝露 ★★★ 105
C1-4 N0.2 VFF 0./5mm ⁻ 一次被熬(迴电流) → 火灾嗪路 ★★★ 103 C1-5 No 2 NNEE 0.75mm ² 一次抽執(接結不良) → 火火曜雲 ★★★ 105
CI 秋月 CI-6 N0.3 NNFF 0./5mm ⁻ 一次彼熟(週龟流) → 火炎嗪路 ★★★ 10/
CI-7 N0.4 EM-ECIF 0.75mm ⁻ 一次彼然(接続个良) → 火炎曝露 ★★★ 109
C1-9 No.2 VFF 0.75mm ² (二次彼熱(クリノ炉加熱) ★★★ 112
<u>C1−10 №3 NNFF 0.75mm² </u> 二次彼熱(クリノ炉加熱) ★★★ 113
C1-11 N0.4 EM-ECTF 0.75mm ⁻ _ 次彼熱(クリノ炉加熱) ★★★ 114
C2-1 №.1 VVF 1.6 φ 一次被熱(接続不良) → 火炎曝露 ★★★ 115
C2-2 No.3 NNFF 0.75mm ² 一次被熱(接続不良) ★★ 117
C2-3 No.4 FM-FCTF 0.75mm ² 一次被熱(接続不良) → 火炎曝露 ★★ 118
C2-4 № 3 NNFF 0 75mm ² 二次被熱(クリブ炉加熱) ★★★ 120
C2-5 №4 FM-FCTF 0.75mm ² 二次被熱(クリブ炉加熱) ★★★ 121
colution 2001 2001 2001 2001 2000 2000 2000 200
C2 ルビー巴の生成物 C2-7 № 2 VFF 0.75mm ² 二次被熱(電気炉加熱) ★ 123
C2-8 № 3 NNFF 0.75mm ² 二次被熱(雷気炉加熱) ★ 124
C2-9 № 3 NNFF 0.75mm ² 二次被熱(雷気炉加熱) ↓ 125
C2-10 № 3 NNFF 0.75mm ² 二次被執(雷気炉加執) ↓ 126
C2-11 № 4 FM-FCTF 0.75mm ² 二次被執(雷気炉加執)
C2-12 №.4 EM-ECTF 0.75mm ² 二次被熱(電気炉加熱) ★★★ 128

写真A1-1-2は、火炎曝露後の外観。表面の黒色層は加熱によって酸化が進み質感に変化が見られ、 脱落した部分も見られるが、全体のシルエットに大きな変化はなく火炎曝露前の状態をほぼとどめていた。 写真A1-1-3は、A1-1-2から表面に生じた黒色の酸化層を一部除去した状態。 いずれの写真も上側は新品試料。

れた。外観観祭時に画像解析から求めた緑径は、0.09mm程度であった。 写真A1-2-3は、写真A1-2-2の断線部を火炎曝露後に内部観察したもの。 内部からテーパー状に痩せた素線が現れた。線径及びテーパー状に痩せた状態は火炎曝露前の状態を ほぼとどめていた。

写真A1-2-4は、写真A1-2-3を更に拡大したもので、写真A1-2-5は、その断線部先端の断面。 素線の形状が崩れて線径が著しく減少している。

写真A1-3-1は発火後の断線部。 写真A1-3-2は同部近傍表面の酸化層を除去した内部の素線の状態を示すもので、鋭くテーパー状に 痩せた素線が見られる。上側は新品試料。

写真A1-3-3は写真A1-3-2で、観察されたテーパー状に痩せた素線の拡大。

記号	種類	サンプルNo.	被熱条件		
A1	線径の減少	A1-4	一次被熱(接続不良) ★★		
参考 データ	試料: №. 4 (EM-I 1_cyc_~1781 _120 °C ~ 130	<u>ECTF 0.75mm²) 備考:</u> 考 	電流負荷6~7.5A Y端子部が溶断 発火までの経過(概略) _cyc _2421_cyc ~ 2499_cyc 2500_cyc ~ 2776_cyc 2777_cyc ℃ 180 ℃ ~ 250 ℃ 270 ℃ ~ 400 ℃ 溶断		
		F			

写真A1-4-1は端子部分で溶断したサンプルだが、コード部分の観察中に断線したもの。上側は新品試料。 写真A1-4-2は、写真A1-4-1の拡大部で断線部にはテーパー状に痩せた素線が見られ、銅素地部 分の断面の画像解析から求めた線径は0.04~0.07mmであった。右側は新品試料。

記号	種類	サンプル№.	被熱条件
A1	線径の減少	A1-5	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF 1.6 φ) 備考: ////////////////////////////////////		
		F f	
	写真A1-5-1は.	二次被熱で線径減少が	「見られたVVFサンプルの外観で、二次被熱サンプルでは特殊

条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-5-2は、その断面。1000℃ 20分加熱までのサンプルについては、断面の画像解析から求め た線径が1.58~1.6mmだったのに対して、このサンプルの線径は1.44mmであった。

記号	· 種類 サンプルNo.		サンプルNo.	被熱条件
A1	線径の減少 A1-6		A1-6	二次被熱(電気炉加熱) ★
参考 データ	<u>試料:</u> №. <加熱条件 ;	_1 (VVF 牛> 加熱温度∶ 加熱時間∶	1.6 ¢) 備考: 1000 ℃ 60 分	
			<image/>	<image/>

写真A1-6-1は、二次被熱で線径減少が見られたVVFサンプルの外観で、二次被熱サンプルでは特殊 条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-6-2は、その断面。断面の画像解析から求めた線径は0.96mmであった。

記号	· 種類 サンプルNo.		サンプルNo.	被熱条件
A1	線径の減少 A1-7		A1-7	二次被熱(電気炉加熱) ★
参考 データ	試料: No. <加熱条(2(VFF 牛> 加熱温度: 加熱時間:	0.75mm ²) 備考: 600 ℃ 30 分	

写真A1-7-1は、二次被熱で線径減少が見られたVFFサンプルの外観で、二次被熱サンプルでは特殊 条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 外観では著しく線径が減少しているようには見えないが、写真A1-7-2のとおり断面を観察すると外周部 の一部に著しく線径が減少した素線が見られた(写真の赤円内)。断面の画像解析から求めた線径は最小 で0.1mmであった。

記号	種類	サンプル№.	被熱条件
A1	線径の減少	A1-8	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 2(VFF <加熱条件> 加熱温度: 加熱時間:	0.75mm ²) 備考: 600 ℃ 60 分	

写真A1-8-1は、二次被熱で線径減少が見られたVFFサンプルの外観で、二次被熱サンプルでは特殊 条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-8-2は、その断面。見た目にも著しく線径が減少している。断面の画像解析から求めた線径は 最小で0.06mmであったが、新品時と同じ0.18mmのものも僅かながら見られた。

記号	弓 種類 サンプルNo.		被熱条件
A1	線径の減少 A1-9		二次被熱(電気炉加熱) ★
参考 データ	<u>試料: №. 2</u> (VFF <加熱条件> 加熱温度: 加熱時間:	0.75mm ²) 備考: 800 ℃ 30 分	
			<image/>

写真A1-9-1は、二次被熱で線径減少が見られたVFFサンプルの外観で、二次被熱サンプルでは特殊 条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-9-2は、その断面。観察される素線数から、一部の素線はすでに全酸化していると思われる。 断面の画像解析から求めた線径は、確認できる素線の最小で0.1mmであった。

記号	種類	サンプルNo.	被熱条件
A1	線径の減少	A1-10	二次被熱(電気炉加熱) ★
参考 データ	試料: №.3(NNFF <加熱条件> 加熱温度: 加熱時間:	- 0.75mm ²) 備考: 400 °C 60 分	
		写真	A1-10-1
		「「「」」	A1-10-2

写真A1-7-1は、二次被熱で線径減少が見られたNNFFサンプルの外観で、二次被熱サンプルでは特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 外観では著しく線径が減少しているようには見えないが、写真A1-7-2のとおり、断面を観察すると外周 部の一部に著しく線径が減少した素線が見られる。

記号	種	類	サンプルNo.	被熱条件
A1	線径の	減少	A1-11	二次被熱(電気炉加熱) ★
参考 データ	試料: №. <加熱条件 加 加	3(NNFI >]熱温度:]熱時間:	⁼ 0.75mm ²) ┃備考: 600 ℃ 60 分	
			F	A1-11-1
			F真	A1-11-2

写真A1-11-1は、二次被熱で線径減少が見られたNNFFサンプルの外観で、二次被熱サンプルでは 特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 外観では著しく線径が減少しているようには見えないが、写真A1-11-2のとおり、断面を観察すると外 周部の一部に著しく線径が減少した素線が見られる。

記号	種類	サンプル№.	被熱条件
A1	線径の減少	A1-12	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 3 (NNFI <加熱条件> 加熱温度: 加熱時間:	F 0.75mm ²) 【備考 : 1000 °C 30 分	

写真A1-12-1は、二次被熱で線径減少が見られたNNFFサンプルの外観で、二次被熱サンプルでは 特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-12-2のとおり、断面を観察すると外周部の一部に著しく線径が減少した素線が見られる。

記号	種類	サンプルNo.	被熱条件
A1	線径の減少	A1-13	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 4 (EM-E <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) 備考: 600 ℃ 60 分	
			A1-13-1
			41-13-2

写真A1-13-1は、二次被熱で線径減少が見られたEM-ECTFサンプルの外観で、二次被熱サンプルで は特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-13-2のとおり、断面を観察すると外周部に著しく線径が減少した素線が見られる。

記号	種類	サンプルNo.	被熱条件
A1	線径の減少	A1-14	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 4 (EM- <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) ┃備考 : 800 ℃ 60 分	

写真A1-14-1は、二次被熱で線径減少が見られたEM-ECTFサンプルの外観で、二次被熱サンプルで は特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。 写真A1-14-2のとおり、特に外周部で著しく線径が減少した素線が見られ、中には全酸化したと思わ れる素線も見られる(矢印で示した部分)。

A1 参考 <	線径の減少	A1-15	二次抽熱(電气炉加熱)
参考 <			
データ	<u>試料: No. 4(EM−I</u> <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) 備考: 1000 °C 20 分	
		F	
	写真A1-15-11a は特殊条件下(本文	よ、二次被熱で線径減少	が見られたEM-ECTFサンプルの外観で、二次被熱サンプルでんど観察されないと思われるもの。

記号	種類	サンプル № .	被熱条件
A2	表面荒れ	A2-1	一次被熱(接続不良) ★★★
参考 データ	試料: No. 1 (VVF <u>1_cyc</u> _ <u>~</u> _ <u>544</u> 73 °C ~ 108	1.6 ¢) 備考 : <u> </u>	電流負荷19A 端子台座金端部で溶断 発火までの経過(概略) - <u>cyc</u> - <u>654_cyc</u> - <u>1015_cyc</u> - <u>1016_cyc</u> - <u>1220_cyc</u> - <u>1221_cyc</u> - <u>c</u> - <u>58 °c</u> ~ <u>194 °c</u> - <u>33 °c</u> ~ <u>280 °c</u> - <u>1221_cyc</u> 溶断
		40 <u>50</u> 60 写真A2-1-1	
		F	TA2-1-2

写真A2-1-1の先端約5mmは、露出して扁平な痩せが生じている。端子台にねじ止めする際被覆を剥いた部分と思われる。先端露出部以降の隣接部は、表面に被覆炭化物や銅化合物がかさぶた状に生じている。

写真A2-1-2は、断線部を拡大したもので、上側は新品試料。

いずれの吹き出し写真も上側は新品試料。

写真A2-2-2は、火炎曝露後の外観。火炎曝露後は、断線部周辺で表面の銅化合物が脱落したためか やや細身になり、他の部位も酸化が進んでいるように見えるものの、火炎曝露前の状態をほぼとどめてい る。上側は新品試料。

写真A2-2-3は、火炎曝露したサンプルの表面から黒色層を取り除いた状態。表面に著しい荒れが見られ、外観観察時に画像解析から求めた線径は1.3mm程度であった。吹き出し写真の上側は新品試料。

与具A2-3-2及び与具A2-3-3は、火灸曝露後の状態。 銅素地が覗いた部分の素線は著しい表面荒れがみられるが、これは一次被熱によるもので火炎曝露前の 状態をほぼとどめている。

記号	種類	サンプルNo.	被熱条件
A2	表面荒れ	A2-4	一次被熱(過電流) ★★★
参考 データ	試料: No. 3 (NNFI 1_cyc_~144 100 ℃ ~106	= 0.75mm ²) 備考: 	電流負荷20~28A 試料のほぼ中央で溶断 発火までの経過(概略) _cyc1512_cyc ~_1922_cyc ℃170 ℃ ~ 220 ℃

写真A2-4-1は、一次被熱(過電流)条件による発火後の状態。上側は新品試料。 写真A2-4-2は、写真A2-4-1中の赤矢印で示した部分。素線表面に著しい荒れが見られる。

写真A2-4-3は、写真A2-4-1中の青矢印で示した部分。 写真A2-4-4は、断線部から約20mm付近の素線表面。断線部周辺は溶断時の発火により被覆が燃

与具A2ー4ー4は、断線部から約20mm付近の素線表面。断線部周辺は溶断時の発火により被覆が燃焼、灰化し脱落したと考えられるが、やや離れた部位では著しい表面荒れ及び被覆の残さが見られる。

写真A2-5-2は、火炎曝露後の断線部。被覆は火炎曝露によって灰化し、容易に除去できた。 写真A2-5-3は、火炎曝露後の断線部近傍表面。素線表面は酸化層に覆われ銅素地の観察は難しいが、表面が荒れている様子が窺われる。

写真A2-5-4及び写真A2-5-5は、断線部から約25mmの位置。 酸化層が脱落して銅素地が見られる部分の素線には著しい表面荒れがみられるが、これは一次被熱によ るもので火炎曝露前の状態をほぼとどめている。

写真A2-6-2及び写真A2-6-3は、火炎曝露後の状態。

表面の荒れは一次被熱によるもので、VFFのものとはタイプが異なり凹凸が滑らかであるが、火炎曝露前の状態をほぼとどめている。

記号	種類	サンプル№.	被熱条件
A2	表面荒れ	A2-7	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF <加熱条件> 加熱温度: 加熱時間:	1.6 <i>φ</i>) 備考: 1000 ℃ 20 分	
			<u>A</u>
	写真A2-7は、二没 は特殊条件下(本文	欠被熱(電気炉加熱)によ と1頁参照)でないとほと	kってVVFサンプルに生じた表面荒れで、二次被熱サンプルで んど観察されないと思われるもの。

記号	種類	<u>サ</u> ンプル№.	被熱条件
A2	表面荒れ	A2-8	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF <加熱条件> 加熱温度: 加熱時間:	1.6 <i>φ</i>) 備考: 1000 ℃ 30 分	
	は特殊条件下(本文	て版款(電気の)がないとほと)	るど観察されないと思われるもの。

記号	種類	サンプルNo.	被熱条件
A2	表面荒れ	A2-9	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 2(VFF <加熱条件> 加熱温度: 加熱時間:	0.75mm ²) 備考 : 600 ℃ 60 分	
		了 了 了 了	
	写真A2-9は、二3 は特殊条件下(本文	欠被熱(電気炉加熱)によ 、1頁参照)でないとほとん	ってVFFサンプルに生じた表面荒れで、二次被熱サンプルで しど観察されないと思われるもの。

記号	種類	サンプル№.	被熱条件
A2	表面荒れ	A2-10	
参考 データ	試料: № 2(VFF <加熱条件> 加熱温度: 加熱時間:	0.75mm ²) 備考: 800 ℃ 20 分	
	写真A2-10は、二 殊条件下(本文1頁	ニ次被熱(電気炉加熱)で [参照)でないとほとんど養	VFFサンプルに生じた表面荒れで、二次被熱サンプルでは特 現察されないと思われるもの。

記号	種類	サンプルNo.	被熱条件
A2	表面荒れ	A2-11	
	請料· № 3 (NNFI	F 0 75mm ²) 備考:	
参考 データ	二、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	800 °C 20 分	
	ルでは特殊条件下	(本文1頁参照)でないと	ほとんど観察されないと思われるもの。

記号	種類	サンプル№.	被熱条件
A2	表面荒れ	A2-12	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 4 (EM-E <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) ┃備考 : 1000 ℃ 10 分	
			<image/>
	写真A2-12は、ニ ンプルでは特殊条件	ニ次被熱(電気炉加熱)に 牛下(本文1頁参照)でな	よってEM-ECTFサンプルに生じた表面荒れで、二次被熱サ いとほとんど観察されないと思われるもの。

記号	種類	サンプル№.	被熱条件
A3	心線表面の銅化合物	A3-1	一次被熱(接続不良) ★★★
参考 データ	試料: №. 1 (VVF1.6 <i>φ</i> <u>1_cyc</u> - <u>-118_cyc</u> 74 °C ~ 120 °C) 備考:	電流負荷19A 端子台座金端部で溶断 ^毛 火までの経過(概略) - <u>cyc</u> - <u>546 cyc ~ 913 cyc</u> 914 cyc ~ 1075 cyc 1076 cyc - 73 °C ~ 123 °C 298 °C ~ 350 °C 785
		写真	
		写真	A3-1-2

写真A3-1-1及び写真A3-1-2の心線表面にかさぶた状に生じた銅化合物は、硬く、比較的しっかり 素地部分と密着している。 試料を折り曲げたりすると脱落する場合があるほか、素地部分との隙間にピンセットの先端を差し込んだり すると剥離する(写真A3-1-1及び写真A3-1-2中の矢印で示した部分)。 吹き出し写真の上側は新品試料。

分析部位2における点分析の結果

分析			分析結	果(wt%)		
位置	0	Cu	Si	CI	Ca	その他
1	29.0	66.3	1.1	1.3	0.9	1.4
2	24.2	75.8				
3	24.3	75.7				
4	26.7	68.3	3.3	1.1	0.6	

<円内は点分析の分析位置>

分析部位3での主な検出元素のマッピング分析結果

写真A3-1-3の分析部位2(点分析)及び分析部位3(マッピング分析)では、主に酸化した銅が銅素地の表面から剥離している様子が窺える。

写真A3-2-1及び写真A3-2-2は、元素分析のためにねじ止め部の数cm部分を樹脂埋めして研磨した断面のマイクロスコープ像。吹き出し写真の上側は新品試料。

点分析の結果

分析			分析結	果(wt%)		
位置	0	Cu	Si	CI	Ca	その他
1	26.2	73.8				
2	24.3	73.3	1.0	0.6	0.8	
3	25.7	74.4				
4	27.5	67.1	3.0	1.3	1.1	
5	25.6	74.4				
6	13.7	86.3				
7	25.8	74.2				
8	14.7	85.3				
9	26.1	73.9				

<円内は点分析の分析位置>

主な検出元素のマッピング分析結果

写真A3-2-2の分析部位において、点分析及び主な検出元素のマッピング分析を行った。 心線表面にかさぶた状に生じた層は主に酸化した銅であるが、部分的に塩素やカルシウムといった被覆に 含まれる元素を検出した。 また、点分析の分析位置8はルビー色の層の部分であるが、銅と酸素のみ検出している。

写真A3-3-2は、写真A3-3-1の吹き出し写真の青円部分で示した断線しなかった極のマイクロス コープ像で、断線極同様に表面に銅化合物が生じている。写真は剥離したかさぶた状の化合物の内側。

写真A3-3-3は、元素分析のために写真A3-3-1の吹き出し写真の赤円部分で示した断線部先端 を、樹脂埋めして断面を研磨した分析部位のマイクロスコープ像。

分析		分析結果(wt%)				
位置	0	Cu	Si	CI	Ca	その他
1	27.0	70.2		1.6	1.3	
2	31.6	57.9	2.9	5.2	2.4	
3	20.0	69.7	10.3			
4	25.0	75.0				
5	26.3	71.7		1.3	0.7	
6	27.4	68.6		2.3	1.7	

<+印は点分析の分析位置>

写真A3-3-3の分析部位において、点分析及び主な検出元素のマッピング分析を行った。 一次被熱サンプル同様、心線表面にかさぶた状に生じた層は主に酸化した銅であり、部分的に塩素やカ ルシウムといった被覆に含まれる元素を検出した。

記号	種類	サンプル№.	被熱条件
A3	心線表面の銅化合物	A3-4	二次被熱(電気炉加熱) ★
参考 データ	試料: No. 1 (VVF 1.6¢ <加熱条件> 加熱温度: 加熱時間:) 備考: 1000 ℃ 60 分	
			43-4-1
	写真A3-4-1は、小#	「「「「」」」」	<image/>
	写真A3-4-1は、心緒 写真A3-4-2は、元素	線表面にかさぶた状 素分析のために写真	の化合物が生じたサンプルの外観。 A3-4-1の点線部分で切断し、樹脂埋めして断面を研磨し

た分析部位のマイクロスコープ像。 本サンプルの加熱条件は1000℃ 60分と過酷なものであり、特殊条件下(本文1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種類	サンプル№.	被熱条件	
A4	素線間の銅化合物	A4-1	一次被熱(過電流) ★★★	
参考	試料: №. 2 (VFF 0.75m	A4-1 一次被熱(過電流) ★★★ mm ²) 備考: 電流負荷17.5~24.5A 試料のほぼ中央で溶断 発火までの経過(概略) - 146 cyc ~ - 1022 cyc - 1023 cyc ~ - 1386 cyc 1387 cyc 1387 cyc 1387 cyc 1387 cyc		
データ	$- \underbrace{\begin{array}{c} 1 \\ 85 \end{array}}_{6} \underbrace{\begin{array}{c} cyc \\ c \end{array}}_{6} - \underbrace{\begin{array}{c} 145 \\ 92 \end{array}}_{6} \underbrace{\begin{array}{c} cyc \\ c \end{array}}_{6} - \underbrace{\begin{array}{c} cyc \\ 92 \end{array}}_{6} \underbrace{\begin{array}{c} cyc \\ c \end{array}}_{6} - \underbrace{\begin{array}{c} cyc \\ 92 \end{array}}_{6} \underbrace{\begin{array}{c} cyc \\ c \end{array}}_{6} - \underbrace{\begin{array}{c} cyc \\c \end{array}}_{6} - \underbrace{\end{array}}_{6} - \underbrace{\begin{array}{c} cyc \\c \end{array}}_{6} - \underbrace{\end{array}}_{6} - \underbrace{\begin{array}{c} cyc \\c \end{array}}_{6} - \underbrace{\end{array}}_{6} - \underbrace{\end{array}}_$	$-\frac{146}{120} \stackrel{\text{cyc}}{\circ} \stackrel{\sim}{\sim} -\frac{1022}{130}$	_cyc _ 1023_cyc ~ _ 1386_cyc 1387_ ℃ 143 ℃ ~ 160 ℃ 溶断	

写真A4-1-2は、断線部(写真A4-1-1)の断面。 中央部の素線は化合物に埋もれている。

写真A4-1-3は、元素分析のために断線部先端を樹脂埋めして、断面を研磨した分析部位のマイクロス コープ像。

分析部位において、主な検出元素のマッピング分析を行ったところ、素線の形状が残った部分以外からも 銅を検出しているほか、先端部や素線間からは被覆に含まれていたと思われる酸素、塩素、カルシウムと いった元素を検出した。

写真A4-2-2は、断線部を破壊して内部素線を観察しているところ。素線間に化合物が見られる。

写真A4-4-1は、一次被熱(過電流)条件による発火直後の状態で、吹き出し写真の円部分を拡大した もの。 また、写真A4-4-2は写真A4-4-1の円部分を更に拡大したもの。断線部直近の素線の状態。素線 表面に付着物が見られる。

写真A4-5-1は、一次被熱(接続不良)条件による発火後の断線部で、吹き出し写真の円部分を拡大したもの。被覆は硬化していたが、脆く容易に取り除くことができた。 写真A4-5-2は、写真A4-5-1から被覆部分を除去し(吹き出し写真)した後、破壊して断面を観察している状態。素線は赤紫色の化合物に埋もれている。吹き出し写真の上側は新品試料。

写真A4-6-2は、火炎曝露後の断線部の被覆部分を取り除いた状態で、吹き出し写真の硬化した表面 被覆は容易に剥がすことができた。 元素分析のために、写真A4-6-2の断線部を樹脂埋めして、点線で示した断面を研磨した。

記号	種類	サンプルNo.	被熱条件
A4	素線間の銅化合物	A4-7	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 2 (VFF 0.75r <加熱条件> 加熱温度: 加熱時間:	nm ²) ┃備考: 600 ℃ 60 分	
	<image/>		

銅化合物が見られたが、一次被熱サンプル特有の素線間の隙間を埋め尽くすほどの堆積状態とは明らか に異なる。 なお、本サンプルの加熱条件は600℃ 60分と過酷なものであり、特殊条件下(本文1頁参照)でないとほ とんど観察されないと思われるもの。

記号	種類	サンプルNo.	被熱条件
A4	素線間の銅化合物	A4-8	二次被熱(電気炉加熱) ★★★
参考 データ	試料: №. 2 (VFF 0.75r <加熱条件> 加熱温度: 加熱時間:	nm ²) <mark>備考</mark> : 800 ℃ 10 分	
		写	- 真A4-8
		主な検出	元素のマッピング分析結果
分析部	部位 SEM像	銅の分布	酸素の分布
塩素	0. 分 布	カルシウム	の分布 炭素の分布

写真A4-8の加熱後のサンプル素線間に見られる赤紫色の層は、一見、一次被熱サンプルと類似しており、また、主な検出元素の分布状況から、銅が素線の外側にも分布している様子が見られるが、一次被熱 サンプル特有の素線間の隙間を埋め尽くすほどの堆積状態とは明らかに異なる。

A4 素線間の銅化合物 A4-9 二次被熱(電気炉加熱) ★	
試料: №.3 (NNFF 0.75mm ²) 備考: 参考 <加熱条件> データ 加熱温度: 400 °C 加熱時間: 60 分	

写真A4-9-1及び写真A4-9-2の加熱後のサンプル素線間には、一見、一次被熱サンプルと類似の 銅化合物が見られたが、一次被熱サンプル特有の素線間の隙間を埋め尽くすほどの堆積状態とは明らか に異なる。

なお、本サンプルの加熱条件は400℃ 60分と過酷なものであり、特殊条件下(本文1頁参照)でないとほとんど観察されないと思われるもの。

写真B1-1-1は、加熱後のサンプルをハンドリングにより折り曲げている様子で、外観上は折損、亀裂 は生じていない。 写真B1-1-2はサンプルの折り曲げ部近傍を樹脂埋めして、断面を研磨した後の金属顕微鏡写真。断 面には粒界割れが見られた。

記号	種類	サンプル№.	被熱条件
B1	折損、亀裂、粒界割れ	B1-2	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF <加熱条件> 加熱温度: 加熱時間:	1.6¢) 備考: 800 ℃ 30 分	
	1 加熱時間:	30 分	
		写真	

写真B1-2-1は、加熱後のサンプルをハンドリングにより折り曲げた際に生じた亀裂。 心線の銅素地及び割れの断面には強い光沢が見られる。 写真B1-2-2は、サンプルの折り曲げ部近傍を樹脂埋めして、断面を研磨した後の金属顕微鏡写真。 断面には粒界割れが見られた。 なお、本サンプルの加熱条件は800℃ 30分と過酷なものであり、特殊条件下(本文1頁参照)でないとほ とんど観察されないと思われるもの。

写真B1-3-1は、加熱後のサンプルをハンドリングにより折り曲げた際に生じた亀裂。心線の銅素地及 び割れの断面には強い光沢が見られる。

写真B1-3-2は、サンプルの折り曲げ部近傍を樹脂埋めして、断面を研磨した後の金属顕微鏡写真。 断面には粒界割れが見られた。

なお、本サンプルの加熱条件は800℃ 60分と過酷なものであり、特殊条件下(1頁参照)でないとほとんど観察されないと思われるもの。

写真B1-4-1は、加熱後のサンプルでクリブ炉から取り出す際、容易に折損した。

写真B1-4-2は、写真B1-4-1の折損した素線の拡大。 写真B1-4-3は、サンプルを樹脂埋めして、断面を研磨しマイクロスコープで撮影したもの。吹き出し中 の画像は電子顕微鏡で撮影したもので、断面には粒界割れと思われる亀裂が発生している。

記号	種	類	サンプルNo.	被熱条件	
В1	折損、亀裂	、粒界割れ	B1-5	二次被熱(バーナ加熱) ★★★	
幺妻	試料: No.	. 3 (NNFI	 F 0.75mm ²) 備考:		
_{愛右} データ	<加熟余†	<i>キ></i> 加熱温度∶ 加熱時間∶	800 ℃ 10 分		
		-			
	1				
			No. of Concession, name		
		-		And the second	
		-			
		-	Management in such as well in		
		-	写	复B1-5-1	
	i	-	TY CARL		
		1		- Car in a	
		1		and the second second	
			Repart C		
			A ACTA	TO UNION	
		1	SALL IN	A A A A A A A A A A A A A A A A A A A	
		A. C.	AUX	The second second	
		- Al			
			A STATE		
		a Real	写真	ĘB1−5−2	

写真B1-5-1は、加熱後のサンプル表面に見られた亀裂。 写真B1-5-2は、サンプルを樹脂埋めして研磨した後の金属顕微鏡像。断面に粒界割れが見られた。

記号	種	類	サンプルNo.	被熱条件	
B1	折損、亀죟	製、粒界割れ	B1-6	二次被熱(バーナ加熱) ★	
参考 データ	<u>試料:</u> № <加熱条	0.3(NNFI 件> 加熱温度: 加熱時間:	⁻ 0.75mm ²) 【備考 : 800 ℃ 20 分		

写真B1-6-1は、折損した加熱後のサンプル。 写真B1-6-2は、サンプルを樹脂埋めして研磨した断面。金属顕微鏡で観察したところ、粒界割れが見られた。 なお、本サンプルの加熱条件は800℃ 20分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

В1	长指 鱼列 型	<u> </u>		
	1/1	位界割れ	B1-7	二次被熱(電気炉加熱) ★
参考 データ	武料: No. (<加熱条件> 加 加 加 。	3 (NNFF > 熱温度: 熱時間:	- 0.75mm ²) 備考: 400 ℃ 60 分	
				aB1-7-1
				TP1-7-2

写真B1-7-1は、加熱後のサンプル表面に見られた折損の状況。 写真B1-7-2は、サンプルを樹脂埋めして研磨した断面。金属顕微鏡で観察したところ、粒界割れが見 られた。

なお、本サンプルの加熱条件は400℃ 60分と過酷なものであり、特殊条件下(1頁参照)でないとほとんど観察されないと思われるもの。

記号	種	類	サンプルNo.	被熱条件	
B1	折損、亀죟	設、粒界割れ	B1-8	二次被熱(電気炉加熱) ★★★	
参考 データ	<u>試料:</u> № <加熱条	0. 3(NNFf 件> 加熱温度: 加熱時間:	⁻ 0.75mm ²) ┃備考: 600 ℃ 10 分		
				t t t t t t t t t t	

写真B1-8-1は、加熱後のサンプル表面に見られた亀裂。 写真B1-8-2は、サンプルを樹脂埋めして研磨した断面。金属顕微鏡で観察したところ、粒界割れが見られた。

記号	種類	サンプルNo.	被熱条件
В1	折損、亀裂、粒界割れ	B1-9	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 3 (NNFI <加熱条件> 加熱温度: 加熱時間:	F 0.75mm ²) 備考: 800 ℃ 20 分	
			<image/>

写真B1-9-1は、加熱後のサンプル表面に見られた亀裂。 写真B1-9-2は、サンプルを樹脂埋めして研磨した断面。金属顕微鏡で観察したところ、粒界割れが見

られた。 なお、本サンプルの加熱条件は800℃ 20分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種	類	サンプル№.		被熱条件	
B1	折損、亀裂、	粒界割れ	B1-10		二次被熱(電気炉加熱)	***
参考 データ	<u>試料:</u> No. <加熱条件 カ カ	4(EM-E -> □熱温度: □熱時間:	CTF 0.75mn 800 ° 10 \$	n ²) 備考: C 分		
	h					

写真B1-10-1は、加熱後のサンプルに生じた折損。電気炉から取り出す際に容易に折損した。 写真B1-10-2は、サンプルを樹脂埋めして研磨した断面。金属顕微鏡で観察したところ粒界割れが見られた。

記号	種類	サンプル№.	被熱条件
B2	線間溶出 B2-1		二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF <加熱条件> 加熱温度: 加熱時間:	1.6¢) 備考: 800 ℃ 20 分	

写真B2-1-1は加熱後のサンプル、写真B2-1-2はサンプルを樹脂埋めして断面を研磨しマイクロス コープで撮影したもので、円で示した部分又は矢印で示した部分に銅の溶出した様子が見られる。 なお、本サンプルの加熱条件は800℃ 20分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種類サンプル№.		被熱条件
B2	線間溶出 B2-2		二次被熱(電気炉加熱) ★
参考 データ	試料: №. 1 (VVF) <加熱条件> 加熱温度: 加熱時間:	1.6 <i>φ</i>) 備考: 800 ℃ 60 分	
		了 子	
		「「「」」	

写真B2-2-1は加熱後のサンプル外観。吹き出し写真の赤い枠で囲んだ部分の拡大写真。 写真B2-2-2はサンプルを樹脂埋めして断面を研磨しマイクロスコープで撮影したもので、矢印で示した 部分に銅と思われる金属光沢の溶出が見られる。 なお、本サンプルの加熱条件は800℃ 60分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種	類	サンプルNo.		被熱条件	
В2	線間]溶出	B2-3		二次被熱(電気炉加熱)	***
参考 データ	試料: № <加熱条(. 2(VFF 件> 加熱温度: 加熱時間:	0.75mm ²) 800 ℃ 10 分	備考:		
				写真		
					B2-3-2	

写真B2-3-1の外観観察では表面の黒色層により銅が溶出している様子は観察できないが、サンプルを樹脂埋めして断面を研磨した金属顕微鏡像では、写真B2-3-2の矢印で示した部分のように素線間に銅が溶出しているのが認められた。

写真B3-1は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像で、吹き出し写真は 加熱後サンプルの外観。 写真中の矢印で示した部分で素線同士が溶着しているのが認められる。

種類	サンプル№.	被熱条件
線間溶着	B3-2	二次被熱(バーナ加熱) ★★★
	F	E^{3-2-1}
写真B3-2-1は.	小熟後サンプルの外額	
	種類 線間溶着 試料: No. 2 (VFF) (加熱条件>) 加熱温度: 加熱時間: 加熱時間:	種類 サンプルMA 線間溶着 B3-2 試料:: No. 2 (VFF 0.75mm ²) 備考: 加熱点度:: 400 °C 加熱時間: 10 分

外観観察では著しい溶着の様子は確認できなかったが、断面ではところどころ素線同士の溶着が認められた。

記号	種	類	サンプル№.	被熱条件
В3	線間	溶着	B3-3	二次被熱(バーナ加熱) ★★
参考 データ	<u>試料:</u> № <加熱条(. 2(VFF 牛> 加熱温度: 加熱時間:	0.75mm ²) 備考: 600 ℃ _20 分	
				<image/>

写真B3-3-1は、加熱後サンプルの外観。 写真B3-3-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 外観観察では著しい溶着の様子は確認できなかったが、断面ではところどころ素線同士の溶着が認められ た。

記号	種	類	サンプルNo.	被熱条件
В3	線間	溶着	B3-4	二次被熱(電気炉加熱) ★★★
参考 データ	試料: № <加熱条・	<u>2</u> (VFF 件> 加熱温度: 加熱時間:	0.75mm ²) 備考: 400 ℃ 10 分	
			F	
				IB3-4-2

写真B3-4-1は、加熱後サンプルの外観。 写真B3-4-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。銅素地同士は 溶着していないが、溶着しようとして素線の断面が変形もしくは溶着していた部分を試料採取や断面サンプ ル作製中に引き剥がしてしまったようにも見える箇所が見られた。

記号	種類	サンプルNo.	被熱条件
В3	線間溶着	B3-5	二次被熱(電気炉加熱) ★
参考 データ	試料: №. 2 (VFF <加熱条件> 加熱温度: 加熱時間:	0.75mm ²) <mark>備考</mark> : 800 ℃ 30 分	
	<u>加熱時間</u> :	30 分	t_{3-5-1}
			EB3-5-2

写真B3-5-1は、加熱後サンプルの外観。 写真B3-5-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 被熱による著しい素線の損傷及び素線同士の明らかな溶着(矢印で示した部分)が認められる。 なお、本サンプルの加熱条件は800℃ 30分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われる。

写真B3-6は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像で、吹き出し写真は 加熱後サンプルの外観。 写真中の矢印で示した部分で素線同士が溶着している。

四角で囲んだ部分では、銅素地同士は溶着していないが、溶着しようとして素線の断面が変形、もしくは溶 着していた部分を試料採取や断面サンプル作製中に引き剥がしてしまったようにも見える。

記号	種類	Į.	サンプルNo).	被熱条件	
В3	線間溶着	 着	B3-7		二次被熱(バーナ加熱)	***
参考 データ	試料: №. 3 <加熱条件> 加熱 加熱	(NNFF	⁻ 0.75mm ²) 600 ℃ 10 分	備考:		
				写真	[B3-7-1	
				写真	B3-7-2	

写真B3-7-1は、加熱後サンプルの外観。 写真B3-7-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 銅素地同士は溶着していないが、溶着しようとして素線の断面が変形もしくは溶着していた部分を試料採 取や断面サンプル作製中に引き剥がしてしまったようにも見える箇所がある。

記号	種	類	サンプルNo.	被熱条件
В3	線間	溶着	B3-8	二次被熱(電気炉加熱) ★★★
参考 データ	<u>試料: No.</u> <加熱条件 た た	3(NNFI \$> 如熱温度: 如熱時間:	⁻ 0.75mm ²) ┃備考: 400 ℃ 20 分	
			F	T_{T}
			日本	B3-8-2

写真B3-8-1は、加熱後サンプルの外観。 写真B3-8-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 銅素地同士は溶着していないが、溶着しようとして素線の断面が変形もしくは溶着していた部分を試料採 取や断面サンプル作製中に引き剥がしてしまったようにも見える箇所がある。

記号	種類	サンプル№.	被熱条件		
В3	線間溶着	B3-9	二次被熱(電気炉加熱) ★		
参考 データ	試料: №. 3 (NNF <加熱条件> 加熱温度: 加熱時間:	F 0.75mm ²) 備考: 1000 ℃ 20 分			
			F_{3-9-2}		
	与真B3-9-1は 写真B3-9-2は 外周部を酸化層が 著で、外周部ほど	、加熱後サンブルの外観 、加熱後サンプルを樹脂 覆っており、この部分でに その程度が大きい。	。 埋め、研磨して観察した断面の金属顕微鏡像。 は素線の分離ができない。また、断面は素線同士の溶着が顕 0分と過離なすのであり、特殊条件下(1 百余昭)でないとほとく		

なお、本サンプルの加熱条件は1000℃ 20分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われる。

写真B3-10は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像で、吹き出し写真は 加熱後サンプルの外観。 表面の酸化層同士で溶着しているようにも見えるが、写真B3-6中の四角で囲んだ部分と同様に銅素地 同士が溶着しようとして変形している。

記号	種類	サンプル№.	被熱条件	
В3	線間溶着	B3-11	二次被熱(バーナ加熱)	**
参考 データ	<u>試料: №. 4(EM-</u> E <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) ┃備考: 600 ℃ 20 分		
		写真日	83-11-1	
	医 百日2-11-1/-	与具	B3−T1−2	

写真B3-11-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 写真中の矢印で示した部分で素線同士が溶着しているのが認められる。

記号	種	類	サンプルNo.	被熱条件
В3	線間]溶着	B3-12	二次被熱(バーナ加熱) ★
参考 データ	試料: № <加熱条(パ	<u>4(EM-I</u> 件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) 備考: 600 ℃ 60 分	
	写 国 部 ··································		よ、加熱後サンプルの外 ま、加熱後サンプルを掛けたの様	

加熱時間が延びたためか、溶着している箇所が多い。 なお、本サンプルの加熱条件は600℃ 60分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われる。

記号	種類	<u>ق</u>	サンプルNo.	被熱条件
В3	線間溶疗	着	B3-13	二次被熱(電気炉加熱) ★★★
参考 データ	試料: №. 4 <加熱条件> 加熱 加熱	4(EM-E ▶ 熱温度: 熟時間:	ECTF 0.75mm ²) 備考 : 600 ℃ 10 分	
			F	B3-13-1

写真B3-13-1は、加熱後サンプルの外観。 写真B3-13-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 外観観察時には、素線同士は容易に分離できたが、断面には素線同士が溶着しようとしている様子が見ら れた。
記号	種類	サンプル № .	被熱条件
В3	線間溶着	B3-14	二次被熱(電気炉加熱) ★
参考 データ	<u>試料: №. 4(EM-</u> F <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) 備考: 800 ℃ 30 分	
		写真[33-14-1

写真B3-14-1は、加熱後サンプルの外観。 写真B3-14-2は、加熱後サンプルを樹脂埋め、研磨して観察した断面の金属顕微鏡像。 表面では酸化層同士が溶着しているが、素線同士が溶着していた痕跡と思われる箇所も観察された。 なお、本サンプルの加熱条件は800℃ 30分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われる。

記号	種類	サンプルNo.	被熱条件		
В3	線間溶着	B3-15	二次被熱(電気炉加熱) ★		
参考 データ	試料: №. 4 (EM-F <加熱条件> 加熱温度: 加熱時間:	ECTF 0.75mm ²) 備考: 800 ℃ 60 分			
		Fi	B3 - 15 - 1		
	写真B3-15-1に 写真B3-15-2に	よ、加熱後サンプルの外行 は、加熱後サンプルを樹脂	観。 指埋め、研磨して観察した断面の金属顕微鏡像。		

加熱時間が長く素線間でも酸化層が成長し、溶着の痕跡を確認することはできない。 なお、本サンプルの加熱条件は800℃ 60分と過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われる。

写真C1-1-2は、火炎曝露後1週間の状態。やはり断線部近傍には緑青が見られず、発火直後の状態 で被覆が残存していた部分に緑青が生じている。 写真C1-1-3は、火炎曝露1か月の状態。発火直後の状態で被覆が残存していた部分に著しく緑青が 生じている。

写真C1-2-2は、火炎曝露後1週間の状態。緑青はほぼ見られない。 写真C1-2-3は、火炎曝露1か月の状態。発火直後の状態で被覆が残存していた部分に著しく緑青が 生じている。

写真C1-3-2は、火炎曝露後1週間の状態。断線部の近傍にところどころ緑青が見られる。 写真C1-3-3は、火炎曝露1か月の状態。一週間後の状態と大きな差は見られない。

写真C1-4-2は、火炎曝露後1週間の状態。断線部の近傍にところどころ緑青が見られる。 写真C1-4-3は、火炎曝露1か月の状態。一週間後の状態と大きな差は見られない。

写真C1-5-2は、火炎曝露後1週間の状態。緑青は見られない。 写真C1-5-3は、火炎曝露1か月の状態。緑青が発生することはなかった。

写真C1-6-2は、火炎曝露後1週間の状態。緑青は見られない。 写真C1-6-3は、火炎曝露1か月の状態。緑青が発生することはなかった。

写真C1-7-2は、火炎曝露後1週間の状態。緑青は見られない。 写真C1-7-3は、火炎曝露1か月の状態。緑青が発生することはなかった。

写真C2-1-2及び写真C2-1-3は、火炎曝露後の状態。

火炎曝露後も、一次被熱(接続不良)の際に生じたと思われる部分以外には、ルビー色の生成物は観察されなかった。

なお、別の新品試料による二次被熱(クリブ炉加熱)条件においても、試料No.1及び2にはルビー色の生成物は見られなかった。

吹き出し写真の上側は新品試料。

写真C2-2-1及び写真C2-2-2は、発火後の状態。 断線部の溶融痕にルビー色の部分が見られる。

写真C2-3-1は、一次被熱(接続不良)条件による発火後のコード側断線部。素線の周囲をルビー色の 層が囲んでいる。 また、写真C2-3-2は、コードをかしめた端子の出口側断線で、ここにもルビー色の部分が見られる(矢 印で示した分部)。

与具C2-3-3~54QC2-3-6は、火炎曝露後のサンフル。 コード側断線部のルビー色は火炎の熱で酸化が進んだためか外側からは確認できなくなっていたが(写真 C2-3-3)、破壊して内部を観察すると、素線の周囲にルビー色の部分が確認できた。 端子側の断線部も外側からはルビー色の部分が確認できなくなっていた(写真C3-3-5)。 写真C3-3-6は、断線部から約50mm離れた部分の素線表面。発火後の状態では被覆に熱の影響が 見られない部分にも素線外周部にルビー色の層が生じており、火炎曝露の際に生じたものであると考えら れる。

写真C2-4は、クリブ炉加熱でルビー色の生成物が見られたNNFFサンプルの外観。 素線の表面にルビー色の生成物が層状に発生している。

写真C2-4

記号	種	類	サンプル№.	被熱条件	
C2	ルビー色	∠ビー色の生成物 C2-6		二次被熱(電気炉加熱) ★	
参考 データ	試料: № <加熱条(1(VVF 件> 加熱温度: 加熱時間:	1.6 ¢) 備考 800 ℃ 20 分	<u></u>	

写真C2-6-1は、電気炉加熱でルビー色の生成物が見られたVVFサンプルの外観で、写真C2-6-2 はその拡大。 ルビー色の生成物は見られるものの、一次被熱や火炎曝露サンプルで見られたものとは発生状況が異な り、表面がざらついて小さな粒状に発生していた。 なお、本サンプルの加熱条件は800℃ 20分の過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種類 サンプル№.		被熱条件			
C2	ルビー色の生成物 C2-7		二次被熱(電気炉加熱)	*		
参考 データ	<u>試料:</u> No. <加熱条件 が が	2(VFF 中熱温度: 加熱時間:	0.75mm ²) 800 °C 20 分	備考:		
				子子		

写真C2-7-1は、電気炉加熱でルビー色の生成物が見られたVFFサンプルの外観で、写真C2-7-2 はその拡大。ルビー色の生成物は見られたが、他の試料で見られるような層状のものではなく、粒状に発 生していた。 VFFサンプルの電気炉加熱では、これ以上の加熱条件でも1000℃ 10分以外では粒状のルビー色もしく は紫色の生成物が発生した。 なお、本サンプルの加熱条件は800℃ 20分の過酷なものであり、特殊条件下(1頁参照)でないとほとん

なお、本サンプルの加熱条件は800℃ 20分の過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種類	サンプルNo.	被熱条件		
C2	ルビー色の生成物	J C2-8	二次被熱(電気炉加熱) ★		
参考 データ	試料: №. 3 (NNF <加熱条件> 加熱温度 加熱時間	F 0.75mm ²) 備考: : 800 ℃ : 20 分			
		写真	[C2-8-1		
		Fille			
	写真C2-8-1は 2はその拡大。NN	、電気炉加熱でルビー色 IFFサンプルの電気炉加	,の生成物が見られたNNFFサンプルの外観で、写真C2-8- 熱では、800℃ 20分以上の加熱条件では部分的にルビー色		

の生成物が生じた。 なお、本サンプルの加熱条件は800℃ 20分の過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	· 種類 サンプルNo.		lo.	被熱条件		
C2	ルビー色の生成物 C2-9			二次被熱(電気炉加熱) ★		
参考 データ	試料: № <加熱条(. 3(NNFI 牛> 加熱温度: 加熱時間:	- 0.75mm ²) 800 °C 30 分	備考:		
				写真 写真 写真	<image/>	

写真C2-9-1は、電気炉加熱でルビー色の生成物が見られたNNFFサンプルの外観で、写真C2-9-2はその拡大。

NNFFサンプルの電気炉加熱では、800°C 30分及び60分加熱で表面のざらついた生成物が生じた。 なお、本サンプルの加熱条件は800°C 20分の過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

写真C2-10-1は、電気炉加熱でルビー色の生成物が見られたNNFFサンプルの外観で、写真C2-1 O-2はその拡大。 NNFFサンプルの電気炉加熱では、1000℃ 20分以上で層状の生成物が生じた。 なお、本サンプルの加熱条件は1000℃ 20分の過酷なものであり、特殊条件下(1頁参照)でないとほと んど観察されないと思われるもの。

記号	· 種類 サンプルNo.		被熱条件			
C2	ルビー色	の生成物	C2-11		二次被熱(電気炉加熱)	*
* *	試料: No.	4 (EM-E	CTF 0.75mm ²)	備考:		
参考 データ	<加烈条件	牛> 加熱温度:	600 °C			
		加熱時間:	30 分			
				-		
					and the second second	
		A Marine		2 the second	Annual States of the Owner of the	
				-	and the second se	
		The state of the s		1		
		C TATION	elinear anna anna anna anna			
		ALC: NOT	and the second sec	Grant		
		STRAIN.			Contraction of the local division of the	
		- Carlor	The region to	4 127.54		
		Internation	and any formation of		A CONTRACTOR OF THE OWNER	
			Carling Strengt	官吉	C2-11-1	
			and the second se	ナ兵		
				244	And in the local distance in the local dista	
					and the second	
		and the second				
		and a second	And the second s	in Indeau		
				7		
		-	D ALAMAS		Contraction of the street of the	
			ALC: DOLLARS	A REAL	The second state of the second	
			All and a state of the	the sea		
		A STOP	and the second second	Silter		
		-	and the second	写真	C2-11-2	

写真C2-11-1は、電気炉加熱でルビー色の生成物が見られたEM-ECTFサンプルの外観で、写真C 2-11-2はその拡大。 EM-ECTFサンプルの電気炉加熱では、600℃ 30分加熱でルビー色の生成物を生じたが、一次被熱で 見られたものとは異なり表面がざらついていた。 なお、本サンプルの加熱条件は600℃ 30分の過酷なものであり、特殊条件下(1頁参照)でないとほとん ど観察されないと思われるもの。

記号	種	類	サンプルN	0.	被熱条件	
C2	ルビー色	ご一色の生成物 C2-12			二次被熱(電気炉加熱)	***
参考	試料: N <加熱条	 0. 4(EM-E 件>	ECTF 0.75mm ²)	備考:		
データ		加熱温度: 加熱時間:	800 ℃ 10 分			
				写真		
				写真	102-12-2	

写真C2-12-1は、電気炉加熱でルビー色の生成物が見られたEM-ECTFサンプルの外観で、写真C 2-12-2はその拡大。 EM-ECTFサンプルの電気炉加熱では、800℃ 10分以上では一次被熱で生じたものと似た層状の生 成物が生じた。 付属資料2

<u>痕跡サンプルの作製方法及び解析結果</u>
1. 試料

サンプルの作製には、一般家庭で用いられている電気製品の器具付きコード及び屋内配線を 想定して表1に掲げた4種類の試料を使用した。

試料	= _1' ±1	道仕	分析結果(wt%)										
No.	武 个 个	等件	分析部位	С	0	Zn	Mg	AI	Si	S	CI	Ca	その他
	VVF		シース	60	15	-	- 1	-	-	-	20	5	-
1	(ビニル絶縁ビニルシース	φ 1.6×2心	被覆 白	55	15	-	_	-		-	20	9	1
	ケーフル平形)		被覆 黒	60	20	-	-	-	-	-	15	5	
2	VFF (ビニル平行コード)		_	45	15	—	-	1	1	-	25	10	3
3	NNFF (クロロプレンコ゛ム絶縁 平形コート゛)	<i>ϕ</i> 0.18 × 30 (公称断面積	_	45	25	1.5	3.5	2	5	1	10	4	3
		0./5 mm ⁻) x 2ແ້ນ	シース	50	30	-	15	-	0.5	-	-	-	4.5
4	(耐燃性ホリエチレン絶縁 耐燃性ポリエチレンシース		被覆 白	60	20	-	15	-	2	-	-	-	3
	キャブタイヤ丸型コード)		被覆 黒	60	20	-	15	-	1	-	-	-	4

表1 試料

2. 作製方法

表2に示すー・二次被熱条件サンプルを、以下に示す方法で作製した。

区分	対象 試料№.	サンプルの種類及び作		目標有効 サンプル作製数			
一次被熱 #\プル	1~4	<端子部接続不良> 端子台のねじをゆるめた状態で素線が溶断するまで負荷電流を断続的に通 電する。					
127 10	2∼4 ^{※1}	く過電流> 定格を超える電流値を素線が溶断するまで問					
一次被熱後 火炎曝露	1~4	6個の一次被熱サンプルのうち3個をコンクリートブ 火炎で加熱する。	試料 ごとに 3				
		<加熱方法>	<加熱温度>	<加熱時間>			
		コンクリートブロック炉内でクリブを火源とする火炎					
		<lpガスバーナ火炎による加熱<sup>※2> 予め火炎の温度を測定し、所定の温度とな るような位置に試料を置き加熱する。</lpガスバーナ火炎による加熱<sup>	400℃前後		- 試料ごとの 各条件におい て1		
			600℃前後				
二次被熱	1~1		800°C以上	各温度に			
サンプル	1.04		200°C	おいて			
		<電気炉による加熱>	400°C	10分、20分、 30分、60分			
		予め所定の温度に設定した電気炉内に試 料を投入し加熱する。	600°C				
			800°C				
			1000°C				

表2 ー・二次被熱条件サンプル

※1:通常、一般家庭内の分岐回路に接続される安全ブレーカの定格電流値を考慮した場合、Fケーブルの屋内配線が溶断 に至るような過電流条件は考えにくいことから試料No.1を除外した。

※2: LPガスバーナを用いた直火加熱実験の温度は、低温領域として400℃前後、中温領域として600℃前後、高温領域 として800℃以上とした。

2.1 一次被熱サンプル

(1) 端子部接続不良

・長さ約150mmの試料を端子台の間に接続する。

・端子部のねじは、あらかじめ完全に締付けた後、No.1 試料については180度、No.2~4の撚

り線試料については90度の位置まで緩めた状態とし、負荷電流値は大よそ定格の1/2~定格とした。

- ・通電中の端子接続部の温度を熱電対で監視しながら、端子部のねじ及び負荷電流値を調節 し、45分通電、15分停止を1サイクルとして、試料が溶断するまで繰り返した。
- ・発熱部となる端子台部分には通電時に、より温度が上昇するよう保温用としてグラスウー ルを詰めた金属性の保温箱を被せた。
- ・異常発熱状態をできるだけ長く継続するために、両極を分離して実験を行った。
- ・試料No.1については導体を真っ直ぐな状態で端子台に取り付け、試料No.2~4の撚り線の ものについては端末部にY端子を圧着して端子台に取り付けた。

写真1 実験装置

写真2 端子部接続不良で赤熱するNo.1 試料

- (2) 過電流
 - ・長さ約350mmの試料を端子台の間に接続する。
 - ・試料のほぼ中央部の温度を被覆の上から熱電対で測定しつつ負荷電流値を試料電線の定格の2~3倍の範囲で調節し、(1)の実験と同じサイクルを試料が溶断するまで繰り返す。
 ・(1)の実験と同様に試料中央部に保温箱を被せ、さらに両極を分離して実験を行った。

写真3 断線して発火するNo.2 試料

2.2 火炎曝露

ー次被熱サンプルで見られた特徴が、その後の火 災炎に曝された後に容易に焼失するか否かを調べ るため、2.1の実験で作製したサンプル6個のうち3 個をコンクリートブロック炉内でクリブを火源と する火炎で加熱した。

おおよそ800℃以上の加熱が5分程度持続するよう ^{※3)}、火源にはクリブ(約20×20×300mmの松材)24本 を井桁状に組み、着火剤としてメタノール約100ml、 脱脂綿10gを用いた。さらにクリブの燃焼中は送風 機による送風を行った。

写真4 断線時に発火するNo.3 試料

写真5 コンクリートブロック炉内部の様子

※3(おおよそ 800℃以上の加熱が 5 分程度持続するよう):火災時の被熱時間を各種工法住宅の火災実験における温度変化¹⁾からみると、軽量 P C 住宅(床上 180cm)で 800~900℃の継続時間約 10 分,在来木造住宅(床上 60cm)で 700~800℃の継続時間約 10 分,2"×4"一般住宅(床上 180cm)で 800~1000℃の継続時間約 5 分,2"×4" 公住形住宅(天井面下 60cm)で 700~800℃の継続時間約 7 分などである。

2.3 二次被熱サンプル

異常のない配線が火災炎に曝された状態を想定 し、新品の被覆付き試料を用い表2に示した各種 の条件で、クリブ炉加熱サンプルは2.2と同様の方 法により、また、バーナ加熱サンプルは写真6に 示す六連式の大型LPガスバーナーを用いて各々 加熱した。

更に、実際の火災では直接火炎による被熱のほ か、火災盛期では酸欠条件下で火炎の輻射熱によ る被熱が考えられることから、電気炉による加熱 実験も加えた。

写真6 バーナーによる加熱実験の様子

3. 解析方法

作製したサンプルは、表3に示す方法により被熱条件ごとに線径減少、折損、緑青等の特徴的な痕跡を解析し観察画像を記録した。

衣る一群研力法						
解析項目	解析方法					
外観、表面の特徴解析	目視及びマイクロスコープによる観察					
断面の特徴解析	研磨後断面の金属顕微鏡観察					
元素分析、マッピング	研磨後断面での EDX による分析					

表3 解析方法

4. 解析結果

作製したー・二次被熱サンプルの解析結果の概要を表4に示し、以下痕跡ごとにその状況を 述べる。

特徴	試料	武料 一次被熱 一次被熱 一次被熱		一次被熱後	二次被熱				
/痕跡	No.	不具合要因	サンプルの特徴	火炎暴露	クリブ炉	バーナ	電気炉		
	1	接続不良	局部的に著しい 線径減少	ー次の特徴 が残る	線径減少なし	線径減少なし	1000℃30分以上 で著しい線径減少		
		接続不良	テーパ状 (線径0.1mm以下~)	ー次の特徴 が残る	ー次被熱ほど の線径減小な	800°C60分で0.14~	600°C、800°C、 1000°Cの30分以		
	2	過電流	線径減少 (線径0.1mm以下~)	ー次の特徴 が残る	い歌生成974 し(0.15mm~)	0.18mm	上で一次同様の 線形減少		
線径の 減少	3	接続不良	テーパ状 (線径0.1mm以下~)	ー次の特徴 が残る	ー次被熱ほど の線径減少な	800°C30分で0.16~	400°C、600°Cの 60分及び1000°C		
	Ŭ	過電流	線径減少 (線径0.1mm以下~)	ー次の特徴 が残る	L(0.15mm~)	0.18mm	30分以上で一次 同様の線径減少		
	4	接続不良	テーパ状 ^{※4} (線径0.04mm以下~)	ー次の特徴 が残る	ー次被熱ほど の線径減少な	線径減少なし	600°C、800°Cの60 分及び1000°C,20		
		過電流	※ 4	-	L(0.16mm~)	1	分以上で一次同 様の線径減少		
	1	接続不良	凹凸の荒れ	ー次の特徴 が残る	ー次被熱ほど の荒れはなし	荒れなし	1000℃20分以上 で一次同様の荒 れ		
	0	接続不良	著しい荒れ	ー次の特徴 が残る	ー次被熱ほど	ー次被熱ほどの荒	600℃60分以上、 800℃、1000℃の 20分以上で一次 同様の荒れ		
	2	過電流	広範囲の荒れ	ー次の特徴 が残る	の荒れはなし	れはなし			
表面荒れ	3	接続不良	著しい荒れ	ー次の特徴 が残る	ー次被熱ほど	一次被熱ほどの荒	800°C20分以上で		
		過電流	広範囲の荒れ	ー次の特徴 が残る	の荒れはなし	れはなし	一次同様の荒れ		
	4	接続不良	浅い窪みの連続	ー次の特徴 が残る	ー次被熱ほど	一次被熱ほどの荒	1000℃以上で一		
	t	過電流	※ 4	—	の荒れはなし	れはなし	次同様の荒れ		
心線表面 の銅化合 物	1	接続不良	硬質の厚い 黒色層	新たな酸化 層が生じた が黒色層は 残存	薄い黒色又は 赤黒い層のみ	800℃以上で薄い 黒色層のみ	1000℃20分以上 で一次同様の黒 色層		
		接続不良	少量	ー次の特徴 が残る	心線外周部、	800°C10分以上で	600℃,60分以上、 800℃以上で一次		
	2	過電流	多量(赤紫色)	ー次の特徴 が残る	素線間に少量	心線外周部に少量	同様の赤紫色の 層		
素線間の 銅化合物	3	接続不良	多量(赤紫色)	化合物は僅 か残るのみ だが、銅が 素線外に拡 散し状態で	素線間に銅化 合物は見られ なかった。	素線間に銅化合物は見られなかった。	400°C60分で茶色 の化合物が見ら れた以外は、素線 間に銅化合物は		
		過電流	多量(赤紫色)	残存			元られるかつた。		
	4	接続不良	なし **4	_ *5	素線間に銅化 合物は見られ	素線間に銅化合物	素線間に銅化合 物は見られなかっ		
		過電流	×4	_	なかった。	iのJC J1 いみり・J / こ。	<i>t</i> =。		

表4 解析結果の概要

特徴	試料	試料 一次被熱 — 一次被熱 — —		一次被熱後	二次被熱			
/痕跡	No.	不具合要因	サンプルの特徴	火炎暴露	クリブ炉	バーナ	電気炉	
	1	接続不良	なし	_ *5	なし	なし	800℃10分以上で 粒界割れ、20及び 30分では折り曲げ ると亀裂 or 粒界 割れ	
+5+8		接続不良	なし	- ^{**5}	451	4-1	4-1	
が頂、 亀裂、	2	過電流	なし	- ^{**5}	なし	なし	なし	
私が割れ	0	接続不良	なし	_ *5	长명소니	800°C以上の加熱	400℃60分以上で 振振 魚烈 炊用	
	3	過電流	なし	_ *5	が損めり	で折損、亀袋、粒 界割れ	折損、単殺、私芥 割れ	
	4	接続不良	なし ^{※4}	— ^{※5}	<i>t</i> >1	<i>t</i> >1	000℃い トズボ店	
	4	過電流	※ 4	—	4U	<i>、</i> よし	000 0以上 0 加損	
	1	接続不良	なし	_ *5	なし	なし	800 [°] C20分 から発生	
	2	接続不良	なし	- ^{**5}	721	<i>t</i> 51	600℃60分 から発生	
		過電流	なし	- ^{**5}	40	<i>γ</i> αυ		
線間溶出	3	接続不良	なし	- ^{**5}	771	171	<i>t</i> cl	
	9	過電流	なし	- ^{**5}	.80	60		
	4	接続不良	なし ^{※4}	- ^{**5}	771	なし	なし	
		過電流	※ 4	—	~~C			
	2	接続不良	- %6	_ *5	4 0	400°C10分	400°C10分	
		過電流	- %6	_ ^{**5}	0259	から発生 	から発生	
線問漆差	2	接続不良	- ※6	- ^{**5}	あり	600°C10分 から発生	400℃20分 から発生	
小水口,石口	5	過電流	- %6	- ^{**5}	6-00			
	4	接続不良	- %6	_ ^{**5}	あり	600°C20分	600°C10分	
		過電流	※ 4	—	0,7	から発生	から発生	
	1	接続不良	発生	発生	発生	- %7	- %7	
	2	接続不良	発生	発生	登生	%7	_ *7	
	~	過電流	発生	発生				
緑青	3	接続不良	3点中2点で発生	発生せず	発生せず	*7	_ *7	
	, j	過電流	発生	_ ^{**5}			_ ~~	
	4	接続不良	発生せず ※4	- ^{**5}	発生せず	_ *7	_ *7	
	4	過電流	※ 4	—		_	_ ~~	

特徴 試料			一次被熱		二次被熱			
/痕跡	No.	不具合要因	サンプルの特徴	火炎暴露	クリブ炉	バーナ	電気炉	
	1	接続不良	断線部近傍に発生し たものがあった	ー次の特徴 が残る	ー部にごくわ ずか	なし	800℃20分以上で わずかに発生	
	2	接続不良	なし	- ^{**5}	<i>t</i> el	なし	600℃20分以上で	
	2	過電流	なし	- ^{**5}	<i>А</i> С		光史 800 C20万 以上では粒状	
ルビー色の生成物	3	接続不良 断線部に発生したも のが1点あった		異常発熱部 位から離れ た位置に生 じた	あり	なし	800 [°] C20分以上で 発生	
		過電流	なし	- ^{*5}				
	4	接続不良	あり	 一次の特徴 は残ったも のの、異常 発熱部位か ら離れた位 置にも生じた 	あり	なし	600℃30分以上で 発生	
		過電流	※ 4	—				

- ※4:接触不良サンプルの3点中1点及び過電流サンプルについては6か月間以上通電して断線しなかったためサンプ ル作製を中止した。
- ※5:一次被熱サンプルでその特徴が見られなかったことから「該当なし」とした。
- ※6:異常発熱していた断線部近傍では素線が著しく酸化するなどしており、確認できなかった。
- ※7:緑青の二次被熱サンプルについては、クリブ加熱実験でのみ作製。

4.1線径の減少

- (1) 一次被熱
 - <試料No.1>
 - ・素地部分の線径は局部的に0.8~1.4mm程度に著しく 減少していた。
 - <試料No.2>
 - ・断線部に向かって素線がテーパー状に線径が減少し ている状態が観察されるサンプルがあった(写真7)。
 - ・過電流サンプルでは素線径が0.1mm以下まで減少し ているものがあった。
 - <試料No.3>
 - ・接続不良サンプルでは素線が断線部に向かってテー パー状に線径が減少しているものがあった。
 - ・過電流サンプルでは素線径が0.1mm以下まで減少しているものがあった。
 - <試料No.4>
 - ・断線部の直近では断線部に向かってテーパー状に0.04~0.07mmまで著しく線径が減少して いた。
- (2) 火炎曝露
 - <試料No.1>
 - ・一次被熱によって生じた線径の減少は火炎曝露後も残存した。
 - <試料No.2>
 - ・断線部に向かってテーパー状に線径が減少した素線が認められ、一次被熱によるものの残 存と考えられた。
 - <試料№.3>
 - ・断線部近傍の断面で素線径が減少した様子は残存した。

写真7-次被熱サンプルでテーパー状に 線径が減少した素線(試料No.2)

<試料No.4>

・断線部の直近では火炎曝露前同様、著しく線径が減少していた。

・火炎曝露前には外観変化の生じていなかった断線部から離れた部分の素線には、著しい線
 径の減少は生じていなかった。

(3)二次被熱

①クリブ炉加熱

いずれの試料についても一次被熱サンプルで見られたような著しい線径の減少は生じなか った。

②バーナ加熱

試料No.2及び3の外周部で0.14~0.16mmまで線径が減少していたものの、一次被熱で見られたような著しい線径の減少を生じたものは無かった。

③電気炉加熱

<試料No.1>

・1000[°]C20分までは大きな変化は生じなかったが、1000[°]C30分では約1.4mm、60分加熱では0. 96mm以下まで線径が減少した。

<試料№.2>

- ・400°C60分、600°C20分以上のサンプルでは主に外周
 部で最小0.1mm程度まで素線径が減少した。
- ・600℃、800℃、1000℃の30分以上では一次被熱と同 程度の0.1mm前後まで素線径が減少し(写真8)、一 部の素線は全酸化していると思われるものも見られ た。1000℃の60分サンプルでは断面全体が酸化した。
 <試料No.3>
- ・400℃60分、600℃60分で外周部に0.1mmを下回る線 径の素線が見られたほか、1000℃30分及び60分加熱 でも一次被熱と同程度の線径となった。

<試料No.4>

写真8 電気炉 600°C60 分サンプル (試料No.2)

- ・600℃30分、800℃20分以上のサンプルでは外周部か らは明らかな素線径の減少が見られた(最小線径は600℃30分、800℃20分のいずれも0.14m m)。
- ・600℃、800℃の60分及び1000℃20分以上で線径が0.1mmを下回り、一次被熱に近似した線 径の減少が見られたほか、中には全酸化していると思われる素線も見られた。

ー次被熱サンプルに生じた銅線の線径減少は、出火後の火炎曝露後も残存し、二次被熱サンプル のクリブ炉加熱及びバーナ加熱では一次被熱時と同等の線径減少は生じなかった。試料№.2~4 の撚り線では、電気炉加熱では400°C60分及び600°C30分以上の加熱条件で一次被熱サンプルと同 程度の線径まで減少したものの、一次被熱サンプルのように局部的なものではなかった。

以上、<u>銅線の局部的な著しい線径の減少は、異常発熱の痕跡であり、火災炎に曝されても容易</u> に消失せず、二次被熱条件では特殊条件でないと生じない^{※8}と考えられた。

※8(二次被熱条件では特殊条件でないと生じない):例えば、二次被熱サンプルにおいて著しい線径の減少が認められたのは、電気炉加熱のうち400℃60分及び600℃30分以上の条件であり、各種工法住宅の火災温度・時間^{※3)}からみれば一般的な住宅火災では想定され難い長時間の加熱条件設定においてのみであり、その他の電気炉加熱条件、クリブ及びバーナによる加熱条件では認められなかった。その他、表面荒れ、折損、線間溶出、線間溶着でも類似の傾向が認められた。(表4「解析結果の概要」参照)

4.2 表面荒れ

<試料No.1>

・表面にかさぶた状に生じた黒色層を除去すると、銅素地は著しく凸凹に荒れていた。

⁽¹⁾ 一次被熱

<試料No.2>

・素線の表面は著しく荒れていた。

<試料№.3>

- ・断線部から10~20mm前後の範囲で素線表面が著しく荒れていた。
- ・過電流サンプルでもほぼ同様の素線の荒れが生じていた。
- <試料No.4>
- ・断線部近傍の銅素地表面には浅い窪みが連続したような形状の荒れが生じていた。
- (2) 火炎曝露
 - <試料No.1>
 - ・かさぶた状の表面の黒色層を除去すると、発火直後に観察した別試料と同様の著しい荒れが 生じていた。
 - <試料No.2>
 - ・火炎曝露によってより酸化が進み、表面全体が黒く変色したものの、断線部近傍で外周部の 黒色層を取り除くと表面の荒れた素線が観察された。
 - <試料N0.3>
 - ・断線部近傍は硬い黒色層が生じて素線表面の観察が困難なものが多かったが、断線部から離れた部分でも多少の荒れは見られたものの、断線部近傍の荒れは他の部位よりも強く、火炎曝露前の状態をほぼとどめていると考えられた。
 - <試料No.4>
 - ・断線部近傍には一次被熱で生じていたものと同様な荒れが見られ、断線部から離れたそれ以 外の部位にはほとんど荒れは見られなかった。

(3)二次被熱

①クリブ炉加熱

- <試料No.1>
- ・銅線表面には多少の荒れは生じたものの一次被熱サンプルで見られたような著しい荒れは生じなかった。

<試料No.2>

- ・細かくざらざらした荒れは見られたが一次被熱で見られたほどの著しい荒れは生じなかった。 <試料№.3>
- ・素線表面の荒れについては一次被熱サンプルの断線部近傍で見られたものほど著しいものは 無かった。
- <試料No.4>
- ・一次被熱で見られたような表面の荒れは生じておらず光沢の強い部分も見られた。

②バーナ加熱

<試料No.1>

・全サンプルを通じて一次被熱サンプルで見られたような著しい表面の荒れは見られなかった。

<試料No.2>

- ・全サンプルを通じて細かくざらざらした表面のもの は見られたが、一次被熱サンプルで見られたほどの荒 れは見られなかった。
- <試料№.3>
- ・800℃60分加熱においても一次被熱サンプルで見られ たような著しい表面の荒れは生じなかった。 <試料№.4>
- ・800°C以上60分の加熱条件においても一次被熱サンプ ルで見られたような荒れは生じなかった(写真9)。

写真9 バーナ加熱800℃以上60分 サンプル(試料№.4)

③電気炉加熱

<試料No.1>

・1000℃ 20分以上のサンプルで一次被熱サンプルに見 られたものと酷似した黒色層と著しい表面の荒れが 生じた(写真10)。

<試料№.2>

- ・600℃60分以上、800及び1000℃20分以上のサンプル では素線表面に著しい荒れが生じた。
- <試料No.3>
- ・800°C20分以上の加熱では表面に著しい荒れが生じた。
 <試料№.4>
- ・1000℃以上のサンプルでは一次被熱と同様な荒れが 生じた。

写真 10 電気炉 1000°C60 分 加熱サンプル (試料No.1)

いずれの試料においても一次被熱サンプルでは銅線表面に著しい荒れが生じた。

二次被熱でも電気炉加熱600°C30分以上の加熱で同様な痕跡を生じたものがあったが、一次被熱サンプルのように局部的なものではなかった。

以上、**銅線表面の著しい荒れは、一次被熱条件でのみ認められ、火災炎に曝されても容易に消失** せず、二次被熱条件では特殊条件でないと生じない^{※8}と考えられた。

4.3 心線表面の銅化合物(試料No.1)

(1) 一次被熱

・いずれのサンプルも断線部の近傍には硬質の容易に剥離しない黒色層が生じた(写真11)。

(2) 火炎曝露

・火炎曝露によって新たな酸化層が生じたものの、一次被熱で生じた黒色層は残存した。 (3) 二次被熱

- ・クリブ炉加熱では薄い黒色又は赤黒い層が生じたのみであった。
- ・バーナ加熱では800℃以上で薄い黒色層が生じたのみであった。
- ・電気炉1000℃20分以上の加熱で一次被熱サンプルと同様な黒色層が生じた(写真12)。

写真 11 一次被熱サンプルの表面(例) 矢印部分が黒色層

写真 12 電気炉 1000°C20 分加熱 サンプル

ー次被熱サンプルの断面をEDXにより元素分析したところ、黒色層からは酸素を25~30wt%検出したほか、絶縁被覆の組成である塩素やカルシウムを検出し、外周部から剥離している様子が観察された(図1)。

通電時の発熱によって絶縁被覆が熱分解して腐食性ガスが生じ、銅線を酸化・腐食させたものと 考えられる。

分析	分析結果					
位置	0	Cu	Si	CI	Ca	その他
1	29.0	66.3	1.1	1.3	0.9	1.4
2	24.2	75.8				
3	24.3	75.7				
4	26.7	68.3	3.3	1.1	0.6	

図1 一次被熱サンプルの断面における元素分析位置とその結果

ー次被熱で生じた外周部の銅化合物は出火後の火炎曝露後も残存し、二次被熱サンプルのクリブ 炉加熱及びバーナ加熱ではそうした痕跡は生じなかった。

電気炉加熱では1000°C20分以上の加熱条件で一次被熱サンプルと同様な状態となったが、一次被熱サンプルのように局部的なものではなかった。

以上、<u>心線表面の銅化合物は、一次被熱条件でのみ認められ、火災炎に曝されても容易に消失せ</u> <u>ず、二次被熱条件では特殊条件でないと生じない^{※8}と考えられた</u>。

4.4 素線間の銅化合物(試料No.2~4)

(1) 一次被熱

<試料No.2>

- ・接続不良サンプルでは、いずれも先端部の10~20mm 前後が黒色の塊となっており、この部分を破壊してみ ると少量だが線間に異物が生じていた。
- ・過電流サンプルでも断線部近傍は硬化して炭化した 被覆が付着するなどして黒色の塊となっていた。
- ・塊の内部では線径の減少した素線が赤紫色の堆積物 に埋もれた状態が観察された(写真13)。
- ・赤紫色の堆積物を元素分析したところ、銅、酸素、 カルシウム、塩素などを検出した。

写真13素線間の銅化合物 (試料No.2)

- ・接続不良サンプルでは断線部から10mmほどの部分が試料No.2で見られたものと同様な表面が黒色の塊となっており、破壊するとやはり赤紫色の異物に埋もれた素線があらわれた。
- ・過電流サンプルでもほぼ同様に断線部近傍で素線間に異物が生じていた。
- <試料No.4>
- ・断線部近傍の素線の表面には厚い黒色層が生成していたものの、素線間に銅化合物は見られなかった。
- (2) 火炎曝露
 - <試料№.2>
 - ・火炎曝露によってより酸化が進み、表面全体は黒く変色したが、一次被熱サンプルの断線部
 近傍で見られた素線間の化合物は火炎曝露後も残存した。
 - <試料No.3>
 - ・断線部近傍で素線の銅が断面の全体に拡散している様子は火炎曝露したサンプルでも観察された。
 - <試料No.4>
 - ・一次被熱で素線間に銅化合物が見られなかったことから、該当なし。

(3) 二次被熱

①クリブ炉加熱

<試料№.2>

・素線表面に黒色又は赤黒い層、外周部及び線間に少量の銅化合物を生じたものがあった。

<試料№.3>

・表面は概ね黒色の酸化層で覆われ、その下にルビー
 色の層を生じた部分が見られたが、素線間に銅化合物は見られなかった。元素分析の結果、組成は銅と
 酸素であり、塩素やカルシウムなどは検出しなかった(写真14)。

<試料N0.4>

・表面には黒色層が生じ、その下にルビー色の層が生じていたが、素線間に銅化合物は見られなかった。

写真 14 クリブ炉加熱後サンプル (試料No.3)

②バーナ加熱

<試料No.2>

- ・800℃以上のサンプルで銅と被覆からの元素による化合物を生じたが、一次被熱サンプルで 見られたような素線が化合物に埋もれて塊となったようなものは無かった。
- <試料No.3>
- ・400℃60分以上の加熱で黒色層が生じたものの、一次被熱サンプルで見られたような銅が断 面に広く拡散したような状況は見られなかった。
- <試料No.4>
- ・素線間に銅化合物は見られず、800℃以上60分の加熱条件においても、薄い黒色層が生じた のみで、一次被熱サンプルで見られたような厚い酸化層は生じなかった。

③電気炉加熱

<試料№.2>

・600℃60分以上、800℃以上のサンプルでは一次被熱 サンプルに類似した素線間の赤紫色の銅化合物が生 じた(写真15)が、一次被熱サンプルのような局部的 なものではなかった。

<試料№.3>

・400℃60分で茶色の銅化合物を生じ、800℃20分以上 では黒色層とルビー色の層が生じたが、断面に素線の 銅が拡散した様子は見られなかった。

<試料No.4>

・600℃30分サンプルでルビー色の層が生じたほか、80 0℃以上では黒色層とルビー色の層が生じたが、素線 間に銅化合物は見られなかった。

写真 15 電気炉 600°C60 分加熱 サンプル(試料No.2)

ー次被熱サンプルの試料No.2、3の断線部近傍の断面について元素分析を行ったところ、銅、酸素を主体に塩素、カルシウムといった元素を検出した。素線の銅と酸素の化合物が被覆素材である 塩素、カルシウムなどと堆積物を形成しているものと考えられる(図2)。 また、この化合物の分布状況は、火炎曝露後も同様に認められた(図3)。

PVC樹脂では150℃近辺から脱塩酸反応が生じ²⁾、このとき生じた塩素が充填材の炭酸カルシウム と反応して塩化カルシウムを生じるといわれている³⁾。通電時の異常発熱によってPVCの脱塩酸反 応が生じて潮解性の塩化カルシウムを生じ、休止時の温度低下時に吸湿した際に一部の塩素と大気 中の水分が結合して塩酸になるなどして、さらに通電時の温度上昇が加わってこうした化合物が生 じたと考えられる。

図2 一次被熱後サンプルの断線部近傍の断面における主な検出元素のマッピング分析結果(試料No.2)

図3 火炎曝露サンプルの断線部近傍の断面における主な検出元素のマッピング分析結果(試料No.2)

以上、素線間の銅化合物は、一次被熱条件でのみ認められ、火災炎に曝されても容易に消失せず、 二次被熱条件では特殊条件でないと生じない^{※8}と考えられた。

4.5 折損、亀裂、粒界割れ

- (1) 一次被熱
- <試料No.1~4>
- ・すべての試料で折損したサンプルは無かった。

(2) 火炎曝露

・一次被熱サンプルではこの特徴が見られなかったことから該当なし。

(3) 二次被熱

①クリブ炉加熱

- ・試料No.1、2及び4で折損を生じたサンプルは無かった。
- ・試料No.3については加熱後の試料は炉から取り出そうとしただけで容易に折損が生じた。

②バーナ加熱

 ・試料№.3の800℃以上の加熱条件で素線が折損し やすく、断面には結晶粒界に沿った亀裂(以下、粒 界割れという)が観察された(写真16)以外には折 損したサンプルは無かった。

写真 16 バーナ 800℃10 分加熱サンプル で見られた粒界割れ(試料No.3)

③電気炉加熱

<試料No.1>

- ・800℃30分以上の加熱サンプルでは、折り曲げる と亀裂が生じた(写真17)。また、1000℃加熱で は折損しなかったが、断面には粒界割れが生じて いた。
- <試料N0.2>
- ・折損したサンプルは無かった。
- <試料N0.3>
- ・400℃60分のサンプルでは折損しやすく、断面に は粒界割れが生じていた。
- <試料N0.4>
- ・800℃以上のサンプルで素線が折損しやすく、断 写真 17 電気炉 800℃60 分加熱サンプル 面にも粒界割れが生じていた。

≪還元雰囲気と折損の関係に関する検証≫

(試料No.1)

一般の電線材料に用いられるタフピッチ銅は、亜酸化銅の形で0.03~0.05%程度の酸素を含有し ており、水素を含む還元雰囲気中で加熱すると水素脆性^{※9}を生じることが知られている⁴⁾。この ため、これを検証するため真空加熱炉を用いて水素ガス置換した雰囲気中で長さ50mmのNo.1の 試料を加熱し、折損が生じる加熱条件を調べた^{※10}。

- ※9:(水素脆性):水素が拡散して亜酸化銅を還元し、その際生じた水蒸気によって脆化する現象。
- ※10:(折損が生じるか否かの判定):水素脆性を評価する試験方法としては、850℃の水素気中で30分加熱後、曲げR 0.2 mm、加重10gでサンプルが折損するまでの繰り返し曲げ回数を求める方法があるが、ここでは火災現場から回収す る際に容易に折損する状態を想定し、他の一・二次被熱サンプル同様、加熱後サンプルの中央部をハンドリングに より1回だけ約180度に折り曲げる操作を行い、折損するか否かで判定した。

還元雰囲気下における、折損と加熱温度・時間との間には、次のグラフに示すような関係のある ことがわかった。

- ・折り曲げた際に折損したサンプルと加熱温度と加熱時間にはグラフに示すとおり、加熱温度が 高いほど短時間の加熱で折損するといった関係が見られた。
- ・900℃では30秒の加熱では折損しなかったが、2.5分の加熱では折損した。
- 800℃では10分加熱では折損したが、5分加熱では折り曲げた際に亀裂が生じるに止まった。
- 550℃では11時間で折損した。
- ・500℃では24時間まで加熱して折損しなかった。

以上の検証結果から、4.5の実験サンプルとこれまでに消防機関等から持ち込まれたサンプルを比 較すると、いずれも折損及び断線部分の外観及び研磨後の断面が酷似しており(写真18及び19)、 こうした現象は水素脆性によって生じるものと考えられる。

写真 18 火災現場から採取された 銅線の折損部(例)

写真 19 左写真のサンプルの断面

≪還元炎と折損の関係に関する検証≫

試料№.1について被覆を除去して800℃以上の火炎中で加熱したところ60分加熱で折損したものの、1000℃のアルゴン雰囲気中で加熱したものについては30分加熱サンプルでも折損せず、粒界割れも観察されなかった。

以上の検証結果から、火災現場から回収された屋内配線などが容易に折損するような場合は、 高温雰囲気下での還元炎^{※11}による被熱や、被覆からの分解ガスによる水素を含んだ還元雰囲気下 での高温被熱等の推定ができると考えられる。

また、(3)③の電気炉加熱では、試料№.3においては400°C60分以上で、試料№.4では800°C以上の加熱条件で折損又は粒界割れが生じた。酸欠状態の炉内で被覆が燻焼し、可燃性ガス中の水素が銅中の亜酸化銅と結びついたと考えられ、試料№.2については与えた実験条件の中では水素脆性を生じなかったことから、被覆材料の違いによる耐熱又は燃焼特性の差が関係しているものと考えられる。

※11 (還元炎): ブンゼンバーナのような燃料ガスに予め空気を混ぜて燃焼させるようなガスバーナでは、ノズルから 吹き出した燃料ガスを空気孔から吸い込んだ空気とあらかじめ混ぜて管口で燃焼させる。その炎は内炎と外炎と に分かれる。内炎は内側の青く輝く円錐状の炎で、水素、一酸化炭素、炭素粒(炭化水素の分解により生ずる)な どを含み、還元性があるので還元炎という⁵⁾。

以上、<u>折損、亀裂、粒界割れは、二次被熱条件でのみ認められ、一次被熱条件では認められなか</u> った。

4.6 線間溶出

(1) 一次被熱

<試料No.1~4>

・すべての試料で線間に銅の溶出を生じたサンプルは無かった。

(2) 火炎曝露

・一次被熱サンプルではこの特徴が見られなかったことから該当なし。

(3) 二次被熱

①クリブ炉加熱

・すべての試料で線間に銅の溶出を生じたサンプルは無かった。

②バーナ加熱

- ・すべての試料で線間に銅の溶出を生じたサンプルは無かった。
- ③電気炉加熱
- ・試料№.1では800°C20~60分加熱サンプルで(写真20)、試料№.2では600°C60分加熱したサンプルでは(写真21)炭化した被覆に混ざって銅が溶出した状態が見られた。
- ・試料No.3、4で線間に銅の溶出を生じたサンプルは無かった。

写真 20 800°C20 分加熱サンプル で溶出した銅(試料No.1)

写真 21 600°C60 分加熱サンプル で溶出した銅(試料No.2)

この特徴はPVC被覆の試料においてのみ発生し、被覆素材による影響が窺われた。 また、一次被熱及び火炎曝露サンプルではこうした特長が生じなかったことから、当該痕跡は火 災中の被熱条件を推定する際に参考となる痕跡と言える。

以上、銅の線間への溶出は、PVC被覆の試料において二次被熱条件でのみ認められ、一次被熱条件では認められなかった。

4.7 線間溶着

(1) 一次被熱

<試料N0.2~4>

・発火部位近傍は素線が酸化するなどしており、銅素地部分同士が溶着している様子は確認できなかった。

(2) 火炎曝露

・一次被熱サンプルではこの特徴が見られなかった ことから該当なし。

- (3) 二次被熱
 - ①クリブ炉加熱
 - ・すべての試料で線間の溶着が生じていた。

写真 22 クリブ 炉加熱で生じた 線間の溶着(試料No. 2)

②バーナ加熱

 ・試料№.2では400°C10分から、№.3では600°C10分から、また№.4では600°C20分から線同士 の溶着が見られた(写真22)。

③雷気炉加熱

- ・試料№.2では400°C10分から、№.3では400°C20分から、また№.4では600°C10分から素線同 士の溶着が見られた。
- ・また、加熱条件が強くなると、素線表面に生じた酸化層を介して溶着するものも見られたが、 素線同士が溶着したのちに溶着部分が表面から酸化しているものもあった。

この特徴は一次被熱では認められず、二次被熱でも被覆の素材を問わず比較的弱い被熱条件から 発生した。発火事故原因究明において重要な手がかりにはなりくい痕跡である。

以上、撚り線コードの線間の溶着は、二次被熱で比較的容易に発生し、一次被熱条件では認めら れなかった。

4.8 緑 青

各実験サンプルにおける緑青の発生状況は概ね表5のとおり。

≣=# ¥si No		一次被熱後	後火炎 曝露	二次被熱後			
司 八个 十110.	次版款版	1週間	1か月	1週間	1か月		
1	▲ 3/3	♦ 1/3	■ 1/3	■ 3/3	© 2/3		
	▼ 3/ 3	× 2/3	♦ 2/3	5 /5	▲ 1/3		
2	▲ 5/6	▲ 4/6	▲ 5/6	© 1/3	$\bigcirc 3/3$		
2	× 1/6	× 2/6	♦ 1/6	▲ 2/3	● 5/ 5		
2	■ 5/6	× 6/6	× 6/6	X 6/6	X 6/6		
5	× 1/6	× 0/0	× 0/0	× 0/0	× 0/0		
4	× 3/3	× 3/3	× 3/3	× 3/3	× 3/3		
▲・埶少化如いめ ■・わずか							

表5 各サンプルでの緑青の発生状態

:款方化可以外

◎:著しく発生 ×:発生せず ▲:部分的

(1) 一次被熱

- ・試料№ 1では実験した3点のサンプルのいずれも一次被熱時に被覆が炭化には至っていなか ったと思われる部位で緑青が発生した。
- ・試料No.2では6点のうち5点について断線部近傍で緑青が発生した。
- ・試料No.3では5点で一次被熱後に断線部近傍で僅かに緑青が発生した。
- ・試料No.4では緑青は見られなかった。

(2) 火炎曝露

- ・試料No.1の1週間後サンプルでは、3点中1点について一次被熱時に被覆が炭化には至ってい なかったと思われる部位で緑青が発生したが、2点は緑青が発生しなかった。また、1か月 後では、3点中1点について断線部近傍でわずかに緑青が発生したが、他の2点では一次被 熱時に被覆が炭化には至っていなかったと思われる部位で緑青が発生した。
- ・試料M.2の1週間後では、4点で断線部近傍に部分的に緑青が発生したが、緑青が見られな。 いものも2点あった。また、1か月後では、5点で断線部近傍に部分的に緑青が発生し、1 点では一次被熱時に被覆が炭化には至っていなかったと思われる断線部から離れた部位で 緑青が発生した(写真23及び24)。
- ・試料No.3及び4については、火炎曝露後に緑青を発生したサンプルは無かった。

(3) 二次被熱サンプル

・試料No.1では3点のいずれも加熱後1週間ではわずかに緑青が観察され、このうち2点につ いては1か月後には著しく緑青が発生した。

- ・試料No.2では1点について加熱後1週間で著しく緑青が発生し、2点についても部分的なが ら緑青が観察された。また、1か月後には3点のすべてについて著しい緑青の発生が見られ た。
- ・試料No.3及び4については、二次被熱で緑青を発生したサンプルは無かった。

写真 23 断線部周辺の 緑青の発生状況

写真 24 断線部から離れた 部位の緑青の発生状況

緑青の主成分は塩基性炭酸銅を中心とした塩基性化合物であるといわれているほか、腐食環境に よっては塩基性塩化銅になることもあるといわれている⁶⁰。火炎曝露実験後に緑青を生じたのが絶 縁被覆にPVCを用いたものであることから、被覆が熱分解したときに生じると考えられる塩素ガス や充填材との反応によって生じる塩化カルシウムが影響していると考えられる。

なお、被覆に塩素を持つ試料No.3で火炎曝露後に緑青を生じなかった理由としては、熱硬化性の 被覆が加熱によって灰化したことで塩素が滞留しなかったためと考えられる。

以上、緑青が発生するか否かについては被覆材料の種類によって異なるが、一次被熱及び二次被 熱の両方で発生が認められた。

- 4.9 ルビー色の生成物
 - (1) 一次被熱
 - <試料No.1>
 - ・断線部の先端にルビー色の生成物を生じたサンプ ルがあった。
 - <試料No.2>
 - ・試料No.2の発火サンプルでルビー色の層を生じた
 ものはなかった。
 - <試料N0.3>
 - ・断線部にルビー色の部分が生じたサンプルが一点 のみあった。
 - <試料No.4>
 - ・断線部の先端にルビー色の生成物を生じたサンプ ルがあった。

写真 25 断線部の素線 (試料No.4:右側は新品銅線)

- ・黒色層が脱落した部分からはルビー色の層が生じていた(写真25)。
- ・ルビー色の層部分を元素分析したところ、組成はほぼ銅と酸素であった(図4)。

分析	分析結果			
位置	0	Cu		
1	23.4	76.6		
2	14.7	85.3		
3		100.0		
4	14.8	85.3		

分析位置はそれぞれ

1:黒色層の最外周部分

2: その内側部分

- 3: 心線が残存している部分
- 4:断面の実体顕微鏡観察でガラス光沢のルビー色に 見えているのが確認できた部分

図4 試料No.4の異常発熱サンプル断線部近傍の断面における元素分析位置及び結果表

(2) 火炎曝露

<試料No.1>

・火炎曝露後も特徴は残存した。

・一次被熱の際に生じたと思われる部分以外には見られなかった(写真26)。

<試料№.2>

・一次被熱でルビー色の生成物が見られなかったことから、該当なし。

<試料№.3>

・一次被熱時でルビー色の生成物が生じていないサンプルを火炎曝露したが、一次被熱時の発熱部位から離れた部位にルビー色の層の生じたものがあった。

<試料No.4>

・火炎曝露によって外側からは確認できなくなったものの、断線部を破壊して内部を観察した ところルビー色の生成物が見られた(写真27)。

・一次被熱時の発熱部位から離れた部位にルビー色の層の生じたものがあった。

写真 26 火炎曝露後サンプルに見られた ル^{*}-色の生成物(試料No.1)

写真 27 断線部内部に残存したル[・]-色の生成物(試料No.4)

(3) 二次被熱

①クリブ炉加熱

・試料No.1及び2では見られなかったが、試料No.3及び4ではルビー色の生成物が生じた。

②バーナ加熱

・全試料についてバーナ加熱ではルビー色の生成物を生じたものは無かった。

③電気炉加熱

<試料No.1>

・800℃20分加熱でルビー色の生成物を生じたが、一次被熱で見られたものとは発生状況が異なっていた。

<試料No.2>

・800℃20分以上の加熱条件で粒状のルビー色生成物が見られた。

<試料№.3>

・800℃20分以上の加熱条件では部分的にルビー色の生成物が生じた。

- ・800℃30分及び60分加熱では表面のざらついた生成物が生じた。
- ・1000[°]C20分以上では層状の生成物が生じた。
- <試料No.4>
- ・600℃30分加熱サンプルで一次被熱で見られたものとは発生状況が異なる表面のざらついた 生成物が生じた。
- ・800℃10分以上では一次被熱で生じたものと似た層状の生成物が生じた。

4.3及び4.4の銅化合物の項で記したとおり、この特徴を生じた部位からはほぼ銅と酸素が検出されており、外観の特徴から亜酸化銅と考えられる。

試料№.1で断線部に見られたこの特徴は火炎曝露後のサ ンプルでも残存し容易に焼失することは無いと考えられる 一方で、試料№.3及び4では一次被熱の段階で被覆が熱の影 響をほとんど受けていないような部位でも火炎曝露後のサ ンプルではこの特徴が発生していることを考慮すると、一 次被熱の特徴と位置付けるのは難しい。

なお、試料№.1について、参考までに被覆を取り除いた 状態で電気炉加熱したところ、800°C10分以上の加熱条件で ルビー色の生成物が層状に発生した(写真28)。

写真 28 被覆を除去して電気炉加熱 した試料№.1 (800°C10 分)

以上、<u>試料No.1の断線部に生じたルビー色の生成物は火炎曝露後も残存したが、試料No.3及び4</u> では一次被熱後の火炎曝露によってこの特徴が生じたほか、クリブ炉加熱でも生じることがあった。

5. まとめ

解析の結果及び一般住宅での小・中規模火災で考えられる被熱条件を考慮するとおおむね以下 のとおりなる。

- ①「線径減少」は異常発熱を反映したものであった。
- 2)異常発熱では「表面荒れ」「心線表面又は素線間銅化合物」も見られた。
- ③ ①②の痕跡は、火災炎に曝されても容易には消失しないもので、火災被熱条件では特殊条件でないと生じない^{※8}と考えられた。
- ④ 「緑青」は異常発熱及び火災被熱条件の両方で発生した。
- ⑤ 「折損」は火災被熱条件のみで認められ、異常発熱では認められなかった。
- ⑥ その他の線間溶出、線間溶着、ルビー色の生成物などの特徴については火災時の被熱状況 を推定する際の着眼点になりうる。

く参考文献等>

- 1) 日本火災学会:火災便覧第3版, 1997
- 2) 菊地光一、河村鴻允、能登文敏: 地絡電流による F ケーブルの発火モードの検討, 火災誌 Vol. 31 No.3, 1981
- 3) 芦沢清美、小俣 桂: 差込プラグの熱劣化による発火メカニズムについて, 平成9年度研究発表 会概要集, 日本火災学会, 1997
- 4)日本伸銅協会:銅および銅合金の基礎と工業技術(改訂版),1991
- 5) 長倉ら: 岩波理化学辞典, 岩波書店, 第5版 2001
- 6) 仲田進一: 銅のおはなし, 日本規格協会, 1992

電線の一・二次被熱条件別サンプル集

2009年2月発行

編集 独立行政法人製品評価技術基盤機構北関東支所 〒376-0042 群馬県桐生市堤町3-7-4 TEL 0277-22-5471 FAX 0277-43-5063

 発行 独立行政法人製品評価技術基盤機構 〒151-0066
 東京都渋谷区西原2-49-10
 TEL 03-3481-1921
 FAX 03-3481-1920

無断転載禁止

電線の一・二次被熱条件別サンプル集